

Polytechnic Institute of Coimbra (P COIMBRA 02) Coimbra Institute of Engineering - ISEC Mathematics and Physics Department

ECTS CATALOGUE

The main language of instruction at Coimbra Institute of Engineering is Portuguese. The Biomedical Instrumentation Master is taught in Portuguese Language with tutorial support in English (support in English from the teachers out of the classes' hours).

This ECTS catalogue includes subject' contents in English Language. However, this doesn't mean that classes are taught in English. Students can choose subjects from this Catalogue to the study plan proposal (Learning Agreement) to be analyzed carefully by the Departmental Coordinators and to be adjusted, after student's arrival, if necessary.

This ECTS catalogue contains information which is valid for this academic year. ISEC reserves the right to adjust the courses offered during the academic year and is not responsible for typing errors or printing mistakes.

Prof. Luís Castro International Relations Office Coordinator

Contact Person *Ms Dália Pires* Tel.: (+351) 239 790 206 E-mail: <u>ri@isec.pt</u> Coimbra Institute of Engineering Rua Pedro Nunes – Quinta da Nora 3030 – 199 Coimbra PORTUGAL *Prof. Luis Melo* Mathematics and Physics Department Coordinator

E-mail: <u>Imelo@isec.pt</u> Coimbra Institute of Engineering Rua Pedro Nunes – Quinta da Nora 3030 – 199 Coimbra PORTUGAL

Polytechnic Institute of Coimbra (P COIMBRA 02) Coimbra Institute of Engineering - ISEC Mathematics and Physics Department

ECTS CATALOGUE

MASTER Biomedical Instrumentation

Old Code	New Code	Title - Portuguese	Title - English	ECTS	Term
		1.º ano / 1 st Year			
664801	60013188	Análise de Dados Biomédicos	Analysis of Biomedical Data	6	Winter
664802	60013199	Modelos de Apoio à Decisão e ao Diagnóstico	Decision Support and Diagnosis Models	6	Winter
664803	60013200	Instrumentação Ótica para Diagnóstico e Terapêutica	Optical Instrumentation for Diagnostic and Therapeutic	6	Winter
664804	60013211	Aquisição de Dados e Instrumentação Virtual	Data Acquisition and Virtual Instrumentation	6	Winter
664805	60013222	Redes de Comunicação em Biomedicina	Communication networks in Biomedicine	6	Winter
664806	60013233	Dosimetria e Proteção das Radiações	Radiation Protection and Dosimetry	7	Spring
664807	60013244	Sistemas de Apoio à Vida	Life Support Systems	7	Spring
664808	61000324	Robótica Médica	Medical Robotics	6	Spring
664809	60013267	Processamento de Sinais e Imagens Biomédicas	Biomedical Image and Signal Processing	7	Spring
664810	60013278	Sistemas de Informação em Saúde	Information Systems in Healthcare	3	Spring
		2.º ano / 2 nd Year			
664811	61000341	Tecnologias de Apoio a Pessoas com Necessidades Especiais	Support technologies for people with special needs	6	Winter
664812	61000359	Manutenção de Equipamentos e Instalações	Equipment and Facilities Maintenance	6	Winter
664813	61000044	Projeto	Project	48	Annual

Signature of Teacher:

Mestrado em Instrumentação Biomédica (Português)

Master Course in Biomedical Instrumentation (Inglês)

Academic Year: _2018_/_2019_

Program Contents

Course Unit D/	ATA ACQUISI	TION AND VIRTUA	L INSTRUMENTA	TION	
Subject type Spe Sci	ecialization ences	Research Ar	ea Electrical Eng	ineering	
Year 1 ST Semest	er 1 st			ECTS	6
Working Hours			Unaccompanied	Working Hours	
Activity Type	Working Hours Per Week	Total Hours	Activity Type		Total Hours
Theoretical Lectures	2	28	Study		55
Theoretical-Practical Lectures			Works / Group W	/orks	12
Practical-Laboratory Lectures	2	28	Project		30
Tutorial Orientation			Evaluation Additional		3
Total of Working Hours		156			
Lecturer					
Activity Type		Name	Q	ualifications	Category
Theoretical Lectures	Victor Danie Helena Jorg	l Neto dos Santos e da Silva Marto		PhD MSc	Assistant Prof. Assistant Prof.
Theoretical-Practical Lectures					
Practical-Laboratory Lectures	Victor Danie Helena Jorg	Victor Daniel Neto dos Santos Helena Jorge da Silva Marto		PhD MSc	Assistant Prof. Assistant Prof.
Tutorial Orientation					
Responsible(s) Lecturer (s)	Victor Danie	l Neto dos Santos			

Goals / Skills

The main aims of this course unit are:

- To understand the data acquisition principles including analog-to-digital and digital-analog conversion, signal conditioning and filtering;
- To understand the underling theory of analogue filters including its analysis and design;
- To understand the main features associated with the data acquisition boards;
- To understand the common virtual instrumentation tools;
- Develop applications using LabView for biomedical signals data acquisition purposes.

The course aims to provide training and specific knowledge in the area of Data Acquisition and Virtual Instrumentation. Students must acquire fundamental knowledge regarding the design, implementation and maintenance of such systems. Furthermore, it is encouraged on students R&D activities, in order to develop new solutions, circuits, programs and applications devoted to the biomedical signals analysis and processing.

Program Contents

Virtual Instrumentation:

Introduction to LabVIEW: Virtual instrument (vi) components; programming tools, etc. Implementation of a VI:

• Loops; data structures; subroutines; timing; graphs and charts; error handling techniques. Modular application development – SubVIs

Common Design Techniques and Patterns:

• Sequential programming; state programming; state machines; parallelism. Use of variables:

Local Variables; global variables; functional global variables; race conditions.

Projects in LabVIEW.

Labview Synchronization Tools: Notifiers; queues; semaphores. Event-driven programming. User Interface.

Data Acquisition:

Basic concepts: sampling; aliasing; quantization; quantization noise; etc.

Digital-analog converter (DAC) and Analog-to-digital converter (ADC)

- Binary-weighted current ladder DACs; R-2R Ladder; Multiplying DACs;
- Flash ADC; successive approximations; counting and integrating ADCs; dual slope ADC, etc.

Signal conditioning

- OPAMPS circuits: inverter; non-inverter; adder; integrator; differentiator; difference, etc.
- Instrumentation amplifier; common and differential gain; CMRR.

Filters

- · Filters types and classification; transfer function;
- analog filters analysis and design; active and passive implementations;
- Introduction to IIR and FIR digital filters; etc.

Data acquisition boards

• Number of digital input channels; resolution; dynamic range; sampling rate; bandwidth, etc.

Electromagnetic compatibility

- · Eddy current; magnetic interference;
- 50 Hz interference suppression including its harmonics.

Work Done

Part I – Virtual instrumentation

1) Introduction to the LabView; 2) Sub-VIS and loops; 3) Case, shift register e feedback nodes

4) Data structures; 5) Type definitions; 6) Introduction to signal acquisition with the LabVIEW; 7) Local and global variables;
8) State machine implementation; 9) Local variables usage 10) Race Conditions

Part II - Data Acquisition

- DAC convertors;
 - 2) Signals acquisition using an ADC;
 - 3) Analog filters.

Micro project: Biomedical application developed based in LabVIEW.

Teaching Methodology

The course unit will be taught through lectures and laboratory classes.

Laboratory classes will take place in a laboratory with computers, data acquisition boards and support software in order to carry out practical assignments' and projects.

Bibliography

- Support material, furnished by course units teachers', such as: slides, lab assignments, application notes, texts, papers that are available to the students in the moodle platform;
- National Instruments application notes and others material;
- S. Sumathi; P. Surekha, LabVIEW based advanced instrumentation systems, Springer, 2007.
- John Essik, Hands-on introduction to LabVIEW for scientists end engineers, Oxford University Press, ISBN978-019-537395-0, 2009.
- S. Wolf, R. Smith, Student Reference Manual for electronic Instrumentation laboratories, Prentice-Hall International., ISBN 0-13-117605-6, 2004.
- Robert H. Bishop, LabVIEW 2009 student edition, Pearson Prentice Hall, ISBN 978-0-13-214129-1, 2010
- Joseph D. Bronzino, Medical Devices and Systems: The Biomedical Engineering Handbook: 3rd edition, CRC Press 2006.
- Gary W. Johnson, Richard Jennings, graphical programming, McGraw-Hill, fourth edition ISBN 0-07-145146-3, 2006.
- Leonard Sokoloff, Applications in LabVIEW, Pearson Prentice Hall, 2004.

Evaluation Method

Formal evaluation exams, laboratory works and a project that should be implemented. Weigh: final written theoretical exam (50%); Laboratory works (25%); Project in labview and hardware (25%).

Approval conditional on obtaining a grade grater or equal than 9.5 values (9.5/20.0) on the final written exam. The laboratorial component grade is subject to the minimum attendance of 75% of the effective number of classes.

Conditions for Exam Admission

Have access to exam students with a minimum attendance of 75% of the laboratory effective lessons and those that implemented and defended with success the implemented projects.

Access Conditions and Attendance Excuse

Accordingly with the applicable regulation.

Conditions for Results Improvement

Only the theoretical component is subject to improvement, a final written exam.

Date 09-10-2018 Signature from the lecturer responsible for the course

Victor D. N. SANTOS

·

Signature of Teacher: Maraces

Mestrado - MSc Instrumentação Biomédica

Mestrado - MSc Biomedical Instrumentation

Academic Year: 2018/2019

Program Contents

Course Unit OPTICAL INSTRUMENTATION FOR DIAGNOSTICS AND THERAPEUTICS Subject type **Research Area** Physics Year Semester ECTS 6,0 1 1 Working Hours **Unaccompanied Working Hours** Working **Hours Per Total Hours** Activity Type **Total Hours** Activity Type Week 78 **Theoretical Lectures** 2 24 Study 2 28 Works / Group Works 20 **Theoretical-Practical Lectures** Practical-Laboratoty Lectures Project **Tutorial Orientation** Evaluation 3 Seminar 4 Additional **Total of Working Hours** 156 Lecturer **Activity Type** Name Qualifications Category Milton Augusto Morais Sarmento Pato de Theoretical Lectures PhD Adjunct Professor Macedo Milton Augusto Morais Sarmento Pato de PhD Theoretical-Practical Lectures Adjunct Professor Macedo Practical-Laboratoty Lectures **Tutorial Orientation** Seminar Given by companies working on optical instrumentation (hardware/software) and biomedical applications Responsible(s) Lecturer (s) Milton Augusto Morais Sarmento Pato de Macedo Goals / Skills

To get a solid knowledge of elementary concepts of radiometry and photometry

To characterize the main light source types, to describe the operation of a LASER and its biomedical applications.

To describe the principles of optical sensors, the fiber optics operating modes and its biomedical applications.

To characterize the various light detectors types and other optical components of optical instrumentation for biomedical applications.

To depict the main physical phenomena of light – tissue interaction and its biological origin.

To characterize some of the main optical instruments used in diagnostic and therapeutic based on its physical principles, and to describe its operation and composition.

To distinguish the two main therapeutic effects of LASER light and to identify its main medical areas of application.

To enumerate some light applications for diagnostic and therapeutic and to describe commercial products, devices, systems using their data sheets /application notes.

March

Program Contents

Topics:

- 1. Fundamentals of radiometry and photometry
- 2. Light sources
- 3. Fiber optics
- 4. Light detectors
- 5. Main Optical Components of Biomedical Optical Instrumentation
- 6. Light Tissue Interaction
- 7. Optical Instrumentation for Diagnostics and Therapeutics: some examples and its operating principles
- 8. Light Applications for Diagnostics and Therapeutics: study of some specific commercial instrumentation

Work Done

Seminar/Webinar: attendance of seminars given by companies in biomedical field, in order to show hardware and/or software instrumentation

<u>Research work:</u> several research areas as fundamental physical operating principles of optical instrumentation, its technological implementation or some new technologies/equipments in te market

<u>Mini-project</u>: project and test of a laboratory assembly. Optical components as light sources and detectors and electronic components are used to implement a system in order verify some theoretical laws as Beer-Lambery law.

Teaching Methodology

Presentation of theoretical foundations of each topic supported with examples and applications in biomedical engineering field.

Problem solving during the lessons by student groups and with orientation.

Pratical application of theoretical concepts through the development of a mini-project consisting in an laboratory assembly. Research work based on discussion of scientific papers about the state of the art in the field of optical instrumentation for diagnostic and therapeutics or data sheet and application notes of commercial equipment.

Compulsory attendance of seminars about biomedical applications of optical instrumentation.

Bibliography

- James M. Palmer and Barbara B. Grant, The Art of Radiometry, SPIE Press, USA, 2010
- Barbara B. Grant, Field Guide to Radiometry, SPIE Press, USA, 2011
- Bahaa E. A. Saleh, MC Teich, Fundamentals of photonics, John Wiley & Sons, USA, 1991
- MV Klein, TE Furtak, Optics, John Wiley & Sons, USA, 1986
- FL Pedrotti, LS Pedrotti, Introduction to optics, 2nd ed, Prentice-Hall International Inc. USA, 1993
- VS Bagnato, Laser e suas aplicações em Ciência e Tecnologia, Livraria da Física, Brasil,2008
- Rudiger Paschotta, Field Guide to Lasers, SPIE Press, USA, 2008
- Rudiger Paschotta, Field Guide to Optical Fiber Technology, SPIE Press, USA, 2010
- Lihong v Wang, Hsin-I Wu, Biomedical Optics: Principles and Imaging, John Wiley & Sons, USA, 2007
- Rongguang Liang, Optical design for biomedical imaging, SPIE Press, USA, 2010
- R Splinter and B A Hooper, An introduction to biomedical optics, Taylor & Francis, USA, 2007
- David W. Ball, Field Guide to Spectroscopy, SPIE Press, USA, 2006
- Joseph D Bronzino Editor, The Biomedical Engineering Handbook Medical Devices and Systems, 3rd Edition, Taylor & Francis, USA, 2006
- John G Webster Editor, Medical Instrumentation: Application and Design, 4th Edition, John Wiley & Sons, USA, 2010
- J Enderle, S Blanchard, J Bronzino, Introduction to Biomedical Engineering, 2nd Ed., Elsevier Academic Press, USA, 2005
- W Mark Saltzman, Biomedical Engineering Bridging Medicine and Technology, Cambridge University Press, USA 2009
- Valery Tuchin Ed., Handbook of Optical Biomedical Diagnostics, SPIE Press, USA, 2002
- Valery Tuchin, Dictionary of Biomedical Optics and Biophotonics, SPIE Press, USA, 2012
- Savage D. et al.: First Demonstration of Ocular Refractive Change using Blue-IRIS in Live Cats. Investigative Ophtalmology & Visual Sciences, 4603–4612, 2014

- Lee T. et al.: Focal Laser Ablation for Localized Prostate Cancer: Principles, Clinical Trials, and Our Initial Experience. Reviews in Urology 16(2), 55–66, 2014
- Milton Macedo, PowerPoint presentations, ISEC
- Milton Macedo, theretical-practical exercises, ISEC
- Specifications of commercial equipment/componentsl
- Scientific papers

Evaluation Method

<u>Research work (20%)</u>: written report made by a group of 2 or 3 students where capacity of synthesis is valued. It is also made a 10 minutes (max.) oral presentation to the other colleagues. <u>Mini-project (20%)</u>: written report made by a group of 2 or 3 students exposing the goals of the work, the system

implemented and the result achieved. It is also made a 10 minutes (max.) oral presentation to the other colleagues. <u>Seminar/Webinar (10%):</u> short report (1-2 pages) of one of the seminar attended by the students.

A minimum mark of 6/20 is demanded for the sum of the three works. Students covered by the status of worker-student (Lei n°7/2009, Lei n°105/2009 e Lei n° 35/2014), in case it is impossible for them to attend all seminars that will occur, a webinar (seminar via web) will be used.

Final exam (50%): A minimum mark of 6/20 is demanded

Conditions for Exam Admission

In accordance with current laws in ISEC.

Access Conditions and Attendance Excuse

NA

Conditions for Results Improvement

In accordance with current laws in ISEC.

Date 15/10/2018 Signature from the lecturer responsible for the course

Signature of Teacher:

Mestrado - MsC Instrumentação Biomédica_ (Português)

Mestrado - MsC Biomedical Engineering __ (Ingês)

Academic Year: _2018_/_2019__

Course Unit DECISION SUPPORT AND DIAGNOSIS MODELS						
Subject type	Mathe	ematics	Research Area	Mathematic	cs	
Year 1	Semester	1			ECTS	6
Working Hours				Unaccompani	ed Working Hours	
Activity Type		Working Hours Per Week	Total Hours	Activity Type		Total Hours
Theoretical Lecture	es	2	26	Study		96
Theoretical-Practic	al Lectures	2	28	Works / Group Works		
Practical-Laborator	ty Lectures			Project		
Tutorial Orientation	ו			Evaluation		4
Seminar			2	Additional		
Total of Working Hours			156			
Lecturer						
Activity Type			Name		Qualifications	Category
Theoretical Lecture	es	Deolinda Ma	ria Lopes Dias Rasteiro)	Doutoramento	Prof. Adjunto
Theoretical-Practic	al Lectures	Deolinda Ma	ria Lopes Dias Rasteiro)	Doutoramento	Prof. Adjunto
Practical-Laborator	ty Lectures					Prof. Adjunto
Tutorial OrientationSomeone Invited by the Physics/MathematicsSeminarDepartment or by the teacher						
Responsible(s) Lo	ecturer (s)	Deolinda Ma	ria Lopes Dias Rasteiro)		

Goals / Skills

Present the potential of decision support methods and diagnosis in the context of Control, Operations Research, Diagnosis and Management, with particular emphasis on the formulation of decision problems within the Biomedical Engineering and particularly useful tools to optimize solutions.

Through the problem formulation / modeling students, based on skills acquired in different modules of the syllabus, will be able to solve the potential problems using the methods that decision support and management and operational research potentiate. Students also gain knowledge that they will be indispensable for understanding the last two chapters. There are databases with vast amounts of information; the use of data mining goes from the display of information to the forecast. We highlight the application in medicine, the diagnostic phase to identify the best therapies, the search for new forms of treatment. With the acquisition of knowledge contained in Chapters IV and V students will be better able to provide, with more certainty, useful information for a diagnosis / treatment. This information will be based, for example, on a function that needs to be determined, which makes the mapping of data into predefined classes (e.g. diagnosis of a given disease from a set of symptoms).

Program Contents

Network Optimization; Linear and Non Linear Programming; Support Vector machines; Data Mining

Work Done

Report with oral discussion of a proposed project by the course's teachers (may be in a group - maximum of 3 students) - Rating 5 values;

Teaching Methododoly

Mainly expositive (theoretical part) although students solve practical by themselves with guidance from the lecturer.

Bibliography

L. Valadares Tavares, "Operational Research", 1996, McGraw Hill.

F. Hillier, G. Lieberman, "Introduction to Operations Research," 2004, McGraw Hill.

• Carlos Henggeler Antunes, Luís Valadares Tavares, (coordinators), Cases of Application of Operations Research, Mc Graw-Hill, 2000.

• EQVMartins, MMBPascoal, DMLDRasteiro, JLESantos. The Optimal Path Problem, Operational Research, Vol 19, No 1, June 1999, pp. 43-60.

LORRAINE, A. C., CARVALHO, A. C. P. L. of. Introduction to Support Vector Machines. São Carlos - SP, April 2003.

Hand, D., Mannil, H., Smyth, P., "Principles of Data Mining '. MIT Press. 2001. ISBN 026208290X.

Course Notes TM Enterprise Miner: Applying Data Mining Techniques, SAS Institute.

• Support material prepared by the teachers responsible for the course (texts and practical exercises).

Evaluation Method

The problems formulation / modeling have a strong component in the evaluation since from it depends a consistent resolution and consequent decision-making and analysis.

Assessment method:

• Report with oral discussion of a proposed project by the course's teachers (may be in a group - maximum of 3 students) - Rating 5 values;

• Two written tests during the semester. 1st test will be on December, 13 and the 2nd test will be on January, 24th. In case of failure students may also be assessed by a written exam - 15 Rating values.

Conditions for Exam Admission

To be a course student.

Access Conditions and Attendance Excuse

To be a course student.

Conditions for Results Improvement

Be enrolled in the exam whenever improvement results are permitted.

Date

15.10.2018

Signature from the le	ecturer respons	ible for the course	\bigcirc
Dednob	Maria	Lopes Dios	Kastens

Lecturer's signature:	prima Giura
Mestrado - MsC Instrumenta	ão biomédica

Mestrado - MsC Biomedical Instrumentation

Academic Year: 2018/2019

Program Contents

Course Unit	ANALYSIS OF	BIOMEDICAL DA	TA		
Subject type B	asic sciences	Research /	Area Mathe	matics	
Year 1st	Semester	1st	2	EC	CTS 6
Working Hours			Unaccom	panied Working Hour	s
Activity Type	Working Hours Per Week	Total Hours	Activity Ty	/pe	Total Hours
Theoretical Lectures	2	28	Study		75
Theoretical-Practical Lecture	es 2	28	Works / G	roup Works	15
Practical-Laboratoty Lecture	s		Project		
Tutorial Orientation			Evaluation	1	3
			Additional		7
Total of Working Hours 15	56			-	
Lecturer					
Activity Type		Name		Qualifications	Category
Theoretical Lectures	Maria Filon	nena Palmeira de Ar	raújo Canova	Master of Science	Prof. Coordenador
Theoretical-Practical Lecture	es Maria Filon	nena Palmeira de Ar	raújo Canova	Master of Science	Prof. Coordenador
Practical-Laboratoty Lecture	S				

Tutorial Orientation

Responsible(s) Lecturer (s)

Maria Filomena Palmeira de Araújo Canova

Goals / Skills The main goal is to present statistical methods applied to health sciences, with emphasis on statistical modeling and survival analysis. Students should be able to understand and apply statistical techniques to biomedical data analysis, using statistical software in order to support clinical research.

Program Contents

Introduction. Study design on health research. Descriptive and analytical studies.

Diagnostic tests and clinical trial measurements.

Statistical tests. Statistical modeling. Regression.

Longitudinal studies. Survival analysis.

Software for statistical analysis.

Work Done

Carrying out a written work including an oral presentation of statistical analysis of data related to health sciences.

Teaching Methododoly

The teaching methodologies are predominantly, the expository method in the theoretical lectures and, in the theoretical practical lectures, the resolution and discussion of application exercises using statistical software when appropriate.

Bibliography

Chen D., Peace K. E., Clinical Trial Data Analysis Using R, 2010, Chapman & Hall/CRC Press.

Giolo S.R., Colosimo E. A., Análise de Sobrevivência Aplicada, 2006, Ed. Edgard Blucher

Gouveia de Oliveira, A. Bioestatística descodificada - Bioestatística, Epidemiologia e Investigação. 2ª edição 2014, Lidel.

Klein J. P., Houwelingen H., Ibrahim J., Handbook of Survival Analysis, 2016, Chapman & Hall/CRC

Marôco J., Análise Estatística com o SPSS Statistics, 7ª edição 2018, Report Number

Riffenburgh R., Statistics in Medicine, 3rd edition, 2012, Academic Press

Wayne W. D., Biostatistics: A Foundation for Analysis in the Health Sciences, 10 th edition, 2013, Wiley.

Zar J. H., Biostatistical Analysis, 5th edition, Northern Illinois University 2010, Pearson.

Notes from lectures and Worksheets in moodle isec

Evaluation Method

Continuous assessment consists of a report with oral discussion of a proposed project, rating 6 values (30%) and a final exam, rating 14 values (70%). The final grade is the sum of the work grade with the exam grade. The student is approved if he has a final grade of at least 10, provided that the exam grade is equal to, or greater than 7 values.

Alternatively, the assessment is made through a final examination (20 values/100%).

The student is approved if he has a final grade of at least 10.

Conditions for Exam Admission

Access to the exam is allowed to all students enrolled in the Course Unit

Access Conditions and Attendance Excuse

Not applicable.

Conditions for Results Improvement

In accordance with the legislation in force.

Date

Signature from the lecturer responsible for the course

08.09.2018

AVOMENAEANJO GNOVA

Mestrado - MSc em Instrumentação Biomédica - 6648 (Português)

Instituto Superior de Engenharia de Coimbra www.isec.pt

Mestrado - MSc in Biomedical Instrumentation - 6648 (Ingês) Academic Year: 2018 / 2019

Program Contents

Course Unit	664812 - MAINT	ENANCE OF EQU	JIPMENT AND FA	ACILITIES	
Subject type	Specialty Sciences	Research A	rea Electric	AL ENGINEERIN	G
Year 2 Sen	nester 1			ECTS	6 6
Working Hours			Unaccompani	ed Working Hou	rs
Activity Type	Working Hours Per Week	Total Hours	Activity Type		Total Hours
Theoretical Lectures Theoretical-Practical Lect	2 ures	28	Study Works / Group	Works	38 60
Practical-Laboratoty Lectu Tutorial Orientation Seminar	ires 2	26	Evaluation Additional		2
Total of Working Hours		156			
Lecturer					
Activity Type		Name		Qualifications	Category
Theoretical Lectures	Iná	ácio Sousa Adelino F	onseca	PhD	Professor Adjunto
Theoretical-Practical Lect Practical-Laboratoty Lect Tutorial Orientation	ures Iná	cio Sousa Adelino F	onseca	PhD	Professor Adjunto
Seminar		To define			
Responsible(s) Lecture	r (s) Inácio Sous	a Adelino Fonseca			
Goals / Skills					
Understand and impleme Perform diagnostic audits Know how to organize an Develop and implement n Perform internal and subd Apply techniques of fault Evaluate maintenance co Develop and monitor mai	nt techniques of orga of the maintenance equipment park; maintenance plans for contracted work mana diagnosis; sts and maintenance intenance control indi	nization and manag status; r machines and equi agement; times; cators;	ement of an industri pment;	al maintenance d	epartment;
Program Contents					
Theory of reliability (distri Corrective, periodic and p Maintenance planning. Inspection equipment (no	butions, series and p predictive maintenand ise, vibration, thermo	arallel circuits, analy ce. ography and tribolog	vsis of main samples y).	s reliability indicato	ors).

Quality of power supply. Electrical protection systems / devices.

Signature of Teacher: _____

Systems of uninterrupted supply of electrical energy.

Basic techniques for diagnosing faults in the sources of electrical equipment.

Maintenance of structured cabling networks (ethernet networks)

Maintenance of electrical and computer equipment.

Seminar: to be held on one of the contents described above.

Work Done

Several themes to choose from, developed in Matlab (choose one and only one option):

- Development of time series analysis algorithms for predictive maintenance / energy consumption;
- Development of comparison analysis of patterns applied to instrumented predictive maintenance signals;
- Development of algorithms for determination of statistical parameters of reliability;
- Development of an application using IoT;
- Theme proposed by the student if there is agreement with the teacher;
- Theme proposed by the teacher if there is agreement with the student;
- General work (compulsory for all students)

Use of Maintenance software - to create a fleet of equipment and maintenance management - Work orders, plans, etc. - 3 values to 4 values.

Works available per statement - Each work 1.5 values to 2 values.

Teaching Methododoly

Theoretical classes

Exposition of theoretical concepts.

Presentation and analysis of examples, stimulating discussion of solutions with students throughout the class. Laboratory classes

The understanding of the acquired knowledge is promoted through the analysis, discussion and realization of practical examples in the laboratory.

Bibliography

- Material in electronic format, in the moodle platform, from slides, Excel sheets, and Maintenance Management software.
- "Maintenance Lean", by João Paulo Pinto, 2013, Publisher: Lidel, ISBN: 978-972-757-877-1
- "Support for the Maintenance Decision in the Management of Physical Assets", Rui Assis, 2010 Publisher: Lidel, ISBN: 978-989-752-112-6
- "An Introduction to Maintenance", by Luís Andrade Ferreira, Publisher: Publindústria, Porto, 1998, ISBN: 972-95794-4-X
- "Maintenance Focusing on Reliability", by Rui Assis, Publisher: Lidel, 1997, ISBN: 972-757-037-2
- "Maintenance Management Of Equipment, Facilities And Buildings", José Paulo Saraiva Cabral, Publisher: Lidel, 2013
- "Asset maintenance engineering methodologies", José M.Torres Farinha CRC Press Taylor & Francis Group, 2018
- Supporting texts prepared by the Teacher.

Evaluation Method

Written exam quoted for 12 values. Minimum of 30% in the Written Exam. Practical assignments for 8 values.

Conditions for Exam Admission

At least 75% of laboratory classes

Access Conditions and Attendance Excuse

For students under the Worker-Student Statute, and for components with compulsory attendance and distributed assessment, it may be agreed upon by the teacher responsible for the curricular unit and the student, adjustments to the functioning of these components.

In this case, during the first two teaching weeks, the students must indicate to their respective teacher their status as student worker, establishing immediately how to adjust the functioning of the referred components. The presentation of the employer's work time or other relevant information may be required.

Conditions for Results Improvement

In accordance with the legislation in force.

Date

15/10/2018

Signature from the lecturer responsible for the course Ifonxc-

Signature of Teacher:

Mestrado - MsC em Instrumentação Biomédica

Mestrado - MsC in Biomedical Instrumentation

Academic Year: 2018/2019

6

ECTS

Course Unit SUPPORT TECHNOLOGY FOR PERSONS WITH SPECIAL NEEDS

Subject type

Research Area

2nd 1st Year Semester

Working Hours

Working Hours		Unaccompanied Working Hours		
Activity Type	Working Hours Per Week	Total Hours	Activity Type	Total Hours
Theoretical Lectures	1	14	Study	15
Theoretical-Practical Lectures			Works / Group Works	15
Practical-Laboratoty Lectures	3	40	Project	70
Tutorial Orientation			Evaluation	
Seminar		2	Additional	

Total of Working Hours

Lecturer

Activity Type	Name	Qualifications	Category
Theoretical Lectures	Frederico Miguel do Céu Marques dos Santos	PhD	Adjunct Prof.
Theoretical-Practical Lectures	an ann a chuire ann a tha na a annan a na bha na chuirean - ann an - ann an - ann an - ann an Annana.		
Practical-Laboratoty Lectures	Marco José da Silva	MSc	Assistant
Tutorial Orientation			
Seminar	will be assured by a professional with branch of a	ctivity related to the (CU scientific area

156

will be assured by a professional with branch of activity related to the CU scientific area

Responsible(s) Lecturer (s)

Frederico Miguel do Céu Marques dos Santos

Goals / Skills

• The vast majority of people with special needs are affected to a greater or lesser extent in four main areas: Communication, Mobility, Handling and Guidance.

· In-depth knowledge of the use of assistive technologies presupposes, on the one hand, the understanding of its more technical aspects (technical components), and on the other a deep knowledge of the human being that will use the technology (human components) as well as the needs presented by the physical and economic environment in which it is inserted (socioeconomic components).

Program Contents

- 1. Communication
 - Interpersonal communication
 - · Synthesized speech
 - · Hearing aids
 - Amplifiers
 - · Smartphone-based communication media
 - Computer access
 - Control interfaces

- Mice and Emulators
- Touch screens
- Pointers (head and mouth)
- Eye Trackers
- 2. Mobility
 - Electrical Mobility
 - Wheelchair
 - Electronic walking sticks
 - Control interfaces

Accessibility

- Home automation adapted
- Public transport
 - Intelligent information systems for the blind
- 3. Handling
 - Control of environment
 - Control units
 - Home automation adapted
 - User Control Interfaces
 - Robotics
 - Adapted equipment
- 4. Orientation
 - Navigation and orientation systems
 - Ultrasound
 - Sound guides
 - Environment adapters

Positioning

- · GPS and GSM localization
- RFID signaling and identification
- · Monitoring and emergency calls

Work Done

Group projects (up to 2 studends) with 1 semester of duration

Teaching Methododoly

- Theoretical: expository
- · Practices: group Project

Bibliography

- Classroom presentations
- Reports of group work from previous years
- · information related to projects to be made available in moodle

Evaluation Method

The evaluation is composed of two components:

• Theoretical component: Report, presentation and discussion of an scientific work from an international journal or international conference, with less than 2 years of publication, with engineering solutions to support people with special needs. This work has a final weight of 7 values, with a minimum of 3.5 values

• Laboratory project: Preparation, execution and report of a laboratory project with report, presentation and final discussion. This work has a final weight of 13 values, with a minimum of 6.5 values

Conditions for Exam Admission

Have attended at least 2/3 of classes

Access Conditions and Attendance Excuse

Not applicable

Conditions for Results Improvement

Students who meet the conditions established in the REACTA

Date

Signature from the lecturer responsible for the course

15-10-2018

Frelen Myl It.

Mestrado - MsC Instrumentação Biomédica

Mestrado - MsC Biomedical Instrumentation

Academic Year: 2018/2019

Program Contents

Course Unit COMMUNICATION NETWORKS IN BIOMEDICINE						
Subject type	Comp	uter Networks	Research	n Area	Electrical and Electror	nics Engineering
Year 1 Sen	nester	1			EC	TS 6
Working Hours				Una	accompanied Working He	ours
Activity Type		Working Hours Per Week	Total Hours	Act	ivity Type	Total Hours
Theoretical Lectures Theoretical-Practical Lecture Practical-Laboratoty Lectu	ures	2	28 26	Stu Wo Pro	ldy Irks / Group Works viect	64 34
Tutorial Orientation		2	2	Eva	aluation	2
Total of Working Hours		L	156			
Lecturer						
Activity Type			Name		Qualifications	s Category
Theoretical Lect <mark>ures</mark>		João Ca	rlos Ramos Perd	iaoto	MSc	Invited Professor
Theoretical-Practical Lect		João Carlos Ramos Perdigoto		MSc	Invited Professor	
Seminar Tutorial Orientation	103	Invited pro	fessional from th	nis cientific	area	
Responsible(s) Lecturer	' (s)	João Carlos F	Ramos Perdigoto	•		

Goals / Skills

To know and understand the technologies available in the market.

To choose, design, implement and maintain small communication networks, using commercially available equipment.

To choose, design, implement and maintain wireless network communication systems using commercially available equipment.

To understand and perform troubleshooting in local networks.

To understand and perform troubleshooting in wireless sensor networks.

Program Contents

Power budget in guided and wireless transmission systems. Introduction to communication networks. Standardization. OSI model. Ethernet networks technology and equipment. TCP / IP protocols. Configuration of wired and wireless networks with TCP / IP. Wireless sensor networks. Energy budget of wireless sensor networks. Applications of wireless sensor networks: the Zigbee protocol. Introduction to RFID applications. Biomedical applications of networks: body networks. Tracking systems in Hospitals. Presentations about Wireless Sensor Networks

Work Done

Understand, analyze and plan local TCP / IP networks using network simulator software and experimental setup configurations;

Plan and implement a wireless sensor network.

Configure and use various network applications.

Develop and deploy network applications.

Teaching Methododoly

Classes will be taught in both theoretical and laboratory classes. Theoretical classes will be expositive and will be used examples and guidance for laboratory classes. External entities (companies or consultants) may be invited to present topics in seminars or the seminars will be presented by the students, after previous research, followed by an open discussion on the subject.

Bibliography

Guang-Zhong Yang, "Body Sensor Networks", Springer-Verlag, 2014 Reynders, D., Mackay, S., Wright, E., "Practical Industrial Data Communications", Newnes Publications, 2003 E. Monteiro, F. Boavida, "Engenharia de redes informáticas", FCA - Editora de Informática, 2011 Lammle, Todd, "CCNA Cisco certified network associate: study guide", Sybex, 2011 Spurgeon, C., "Ethernet: the definitive guide", O'Reilly, 2014 Geier, Jim, "Wireless Lans: implementing interoperable networks", MacMillan, 2002 Faludi, R, "Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and Processing", O'Reilly, 2011 Elhoseny, M, Hassanien, A., "Dynamic Wireless Sensor Networks: New Directions for Smart Technologies", Springer, 2018

Evaluation Method

Final exam. Laboratory work and reporting.

Synthesis text on the topics covered in the program and / or related content, with individual presentation during the contact hours.

Approval for the UC is dependent on obtaining a minimum of 10 (of 20) values, taking into account the following weights:

- a) Final exam 14 (at least 6);
- b) Laboratory work and report 4 (at least 2);
- c) Synthesis text 2 (delivered up to January 2, 2019)

Conditions for Exam Admission

Regular attendance of laboratory classes with a maximum of 2 classes missed.

Access Conditions and Attendance Excuse

In accordance with the academic regulations and applicable laws.

Conditions for Results Improvement

In accordance with the academic regulations and applicable laws.

Date

Signature from the lecturer responsible for the course

15-October-2018