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Preface

Vibration is a classical subject whose principles have been known and stud-
ied for many centuries and presented in many books. Over the vears, the use
of these principles to understand and design systems has seen considerable
crowth in the diversity of systems that are designed with vibrations in mind:
mechanical, aerospace, electromechanical and microelectromechanical de-
vices and systems, biomechanical and biomedical systems, ships and sub-
marines, and civil structures. As the performance envelope of an enginecered
system is pushed to higher limits, nonlinear effects also have o be taken into
account.

This book has been written to enable the use of vibration principles in a
broad spectrum of applications and to meet the wide range of challenges
faced by system analysts and designers. To this end, the authors have the fol-
lowing goals: a) to provide an introduction to the subject of vibrations for un-
dergraduate students in engineering and the physical sciences, b) to present
vibration principles in a general context and to illustrate the use of these prin-
ciples through carefully chosen examples from different disciplines, ¢) to use
a balanced approach that integrates principles of linear and nonlinear vibra-
tions with modeling, analysis, prediction, and measurement so that physical
understanding of the vibratory phenomena and their relevance for engineer-
imng design can be emphasized, and d) to deduce design guidelines that are ap-
plicable to a wide range of vibratory systems.

In writing this book, the authors have used the following guidelines. The
material presented should have, 1o the exitent possible, a physical relevance o
justify its introduction and development. The examples should be relevant
and wide ranging, and they should be drawn from different areas, such as bio-
mechanics, electronic circuit boards and components, machines, machining
{cutting) processes, microglectromechanical devices, and structures. There
should be a natural integration and progression between linear and nonlinear
systems, between the time domain and the frequency domain, among the re-
sponses of systems to harmonic and transient excitations, and between dis-
crete and continuous system models. There should be a minimum emphasis

ix
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Preface

placed on the discussion of numerical methods and procedures, per se, and in-
stead, advantage should be taken of tools such as MATLAB for generating
the numerical solutions and complementing analytical solutions. The algo-
rithms for generating numerical solutions should be presented external to the
chapters, as they tend to break the flow of the material being presented. (The
MATLAR algonthms used to construct and generate all solutions can be
found at the publisher’s web site for this book.) Further advantage should be
taken of tools such as MATLAB in concert with analysis, so that linear sys-
tems can be extended to include nonlinear elements, Finally, there should be
a natural and integrated interplay and presentation between analysis, model-
ing, measurement, prediction, and design so that a reader does not develop ar-
tificial distinctions among them.

Many parts of this book have been used for classroom instruction in a vi-
brations course offered at the junior level at the University of Maryland. Typ-
ically, students 1n this course have had a sophomore-level course on dynam-
ics and a course on ordinary differential equations that includes Laplace

transforms. Beyvond that, some lundamental material on complex numbers
LAppendix F) and linear algebra (Appendix E) is introduced at the appropri-
ate places in the course. Regarding obtaining the solution for response, our
preference in most instances is (o obtain the solution by using Laplace trans-
forms. A primary motivation for using the Laplace transform approach is that
it is used in the study of control systems, and it can be used with ease to show
the duality between the time domain and the frequency domain. However,
other means to solve for the response are also presented in Appendix D.

This book has the following features. Both Newton's laws and La-
grange’s equations are used to develop models of systems. Since an important
part of this development requires kinematics, kinematics is reviewed in Chap-
ter 1. We use Laplace transforms to develop analytical solutions for linear vi-
bratory systems and, from the Laplace domain, extend these results 1o the fre-
gquency domain. The responses of these systems are discussed in both the time
and frequency domains 1o emphasize their duality. Notions of transfer func-
tions and frequency-response Munctions also are used throughout the book to
help the reader develop a comprehensive picture of vibratory systems. We
have introduced design for vibration (DFV) guidelines that are based on vi-
bration principles developed throughout the book. The guidelines appear at
the appropriate places in each chapter. These design guidelines serve the ad-
ditional function of summarizing the preceding material by encapsulating the
maost important elements as they relate to some aspect of vibration design.
Many examples are included from the area of microelectromechanical sys-
tems throughout the book to provide a physical context for the application of
principles of vibrations at “small” length scales. In addition, there are several
examples of vibratory models from biomechanics. Throughout the book, ex-
tensive use has been made of MATLAB, and in doing so, we have been able
o include a fair amount of new numerical results, which were not accessible
or nol easily accessible o analysis previously. These resulis reveal many in-
teresting phenomena, which the authors believe help expand our understand-
ing of vibrations.

[h%
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Preface xi

The book i1s organized into nine chapters, with the topics covered rang-
ing from pendulum systems and spring-mass-damper prototypes to beams. In
mechanics, the subject of vibrations 15 considered a subset of dynamices, in
which one is concerned with the motions of bodies subjected o forces and
moments. For much of the material covered in this book, a background in
dynamics on the plane is sufficient. In the introductory chapter (Chapter 1),
a summary is provided of concepts such as degrees of freedom and principles
such as Newton’s linear momentum principle and Euler’s angular momentuin
principle.

In the second chapter, the elements that are used to construct a vibratory
system model are introduced and discussed. The notion of equivalent spring
stiffness is presented in different physical contexts. Different damping mod-
¢ls that can be used in modeling vibratory systems also are presented in this
chapter. A section on design for vibration has been added to this edition. In
Chapter 3, the derivation of the equation governing a single degree-of-

freedom vibratory system 15 addressed. For this purpose, principles of linear
momentum balance and angular momentum balance and Lagrange’s equa-
tions are used. Notions such as natural Irequency and damping factor also are
introduced here. Linearization of nonlinear systems also 1s explained in this
chapter. In the fourth chapter, responses to different initial conditions, in-
cluding impact, are examined. Responses of systems with linear springs and
nonlinear springs also are compared here. Free-oscillation characteristics of
systems with nonlinear damping also are studied. The notion of stability is
briefly addressed, and the reader is introduced to the important phenomenon
of machine-tool chatter.

In Chapter 5. the responses of single degree-of-freedom systems sub-
jected to periodic excitations are considered. The notions of resonance,
frequency-response functions, and transfer functions are discussed in detail.
The responses ol linear and nonlinear vibratory systems subjected 1o har-
monic excitations also are examined. The Fourier transform is introduced,
and considerable attention is paid to relating the information in the time do-
main to the frequency domain and vice versa. For different excitations, sensi-
tivity of frequency-response functions with respect to the system parameters
also 1s examined for design purposes. Accelerometer design is discussed, and
the notion of equivalent damping is presented. This edition of the book also
includes a section on alternative forms of the frequency-response function. In
Chapter 6, the responses of single degree-of-freedom systems to different
types of external transient excitations are addressed and analyzed in terms of
their frequency spectra relative to the amplitude-response function of the sys-
tem. The notion of a spectral energy is used to study vibratory responses, and
a section on impact testing has been added.

Multiple degree-of-freedom systems are treated in Chapters 7 and 8 lead-
ing up to systems with an infinite number of degrees of freedom in Chapter 9.
In Chapter 7, the derivation of governing equations of motion of a system with
multiple degrees of freedom 1s addressed by using the principles of linear
momentum balance and angular momentum balance and Lagrange’s equa-
tions, The natural frequencies and mode shapes of undamped systems also are
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Preface

studied in this chapter, and the notion of a vibratory mode is explained. Lin-
earization of nonlinear multiple degree-of-freedom systems and systems with
gyroscopic forces also are treated in this chapter. Stability notions discussed
in Chapter 4 for a single degree-of-freedom system are extended to muluple
degree-of-freedom systems, and conservation of energy and momentum are
studied. In this edition, a section on vibrations of rotating shafls on flexible
supports has been added.

In Chapter &, different approaches that can be used to obtain the response
of a multiple degree-of-freedom system are presented, These approaches in-
clude the direct approach, the normal-mode approach, the Laplace transform
approach, and the one based on state-space formulation. Explicit solution
forms for responses of multiple degree-of-freedom systems are obtained and
used to arrive at the response to initial conditions and different types of forcing.
The importance of the normal-mode approach to carry out modal analysis of
vibratory systems with special damping properties 1s addressed in this chapter.
The state-space formulation is used o show how vibratory systems with arbi-

trary forms of damping can be treated. The notion of resonance in a multiple
degree-of-freedom system is addressed here. Notions of frequency-response
functions and transfer functions, which were introduced in Chapter 5 for single
degree-of-freedom systems, are revisited, and the relevance of these notions
for system identification and design of vibration absorbers, mechanical filters,
and vibration isolation systems is brought forth in Chapter 8. The vibration-
absorber material includes the traditional treatment of linear vibration ab-
sorbers and a brief introduction to the design of nonlinear vibration absorbers,
which include a bar-slider system, a pendulum absorber, and a particle-impact
damper. Tools based on optimization techniques are also introduced for tailor-
ing vibration absorbers and vibration isolation systems.

In Chapter 9, the subject of beam vibrations is treated at length as a
representative example of vibrations of systems with an infinite number of
degrees of freedom. The derivation of governing equations of motion for
1sotropic beams is addressed and both free and Forced oscillations of beams are
studied for an extensive number of boundary conditions and interior and exte-
rior attachments. In particular, considerable attention is paid to free-oscillation
characteristics such as mode shapes, and effects of axial forces, elastic foun-
dation, and beam geometry on these characteristics. A large number of nu-
merical results that do not appear elsewhere are included here, In Chapter 9,
the power of the Laplace transform approach to solve the beam response for
complex boundary conditions is illustrated. Furthermore, this edition also
includes an appendix on the natural frequencies and mode shapes associated
with the free oscillations of strings, bars, and shafts, each for various combi-
nations of boundary conditions including an attached mass and an attached
spring. Also presented in the appendix are results that can be used to determine
when the systems can be modeled as single degree-of-freedom systems.

This edition of the book includes several aids aimed at facilitating the
reader with the material. In the introduction of each chapter, a discussion is
provided on what specifically will be covered in that chapter. The examples
have been chosen so that they are of different levels of complexity, cover a

[h%
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Preface AN

wide range of vibration tepics and, in most cases, have practical applications
1o real-world problems. The exercises have heen reorganized to correlate with
the most appropriate section of the text. A glossary has been added to list in
one place the definitions of the major terims used in the book. Finally, this edi-
tion of the book includes seven appendices on the Tollowing: 1) Laplace trans-
form pairs, 11) Fourier series, iii) notion of the decibel, iv) complex numbers
and variables, v) linear algebra, vi) solution methods to second-order ordinary
differential equations, and vii) natural frequencies and mode shapes of bar,
shatts, and strings.

In terms of how this book can be used for a semester-long undergraduate
course, our experience at the University of Maryland has been the following.
In a course format with about 28 seventy-five minute lectures, we have been
able to cover the following material: Chapter |; Chapter 2 excluding Section
2.5; Chapter 3; Sections 4.1 to 4.3 of Chapter 4; Chapter 5 excluding Sections
5.3.3, 5.8, 59, and 5.10; Sections 6.1 to 6.3 of Chapter 6; Sections 7.1 to 7.3
of Chapter 7 excluding Sections 7.2.3, 7.3.3, and 7.3 .4; and Sections 8.1, 8.2,
8.4, 8.5, and 8.6.1 of Chapter §. We also have used this book in a format with
28 fifty-minute lectures and 14 ninety-minute-long studio sessions for an un-
dergraduate course. In courses with lecture sessions and studio sessions, the
studio sessions can include MATLAB studios and physical experiments, and
in this format, one may be able to address material from Sections 2.5, 4.4, 4.5,
5.10, 7.2, and 8.6, Of course, there are sections such as Section 4.2 of Chap-
ter 4, which may be too long to be covered in its entirety. In sections such as
these, it is important to strike a balance through a combination of reading as-
signments and classroom instruction. Our experience is that a careful choice
of periodic reading assignments can help the instructor cover a considerable
amount of material, if desired. We also encourage an instructor to take ad-
vantage of the large number of examples provided in this book. Chapter 9 is
not covered during the classroom lectures, but students are encouraged o ex-
plore material in this chapter through the project component of the course il
appropriate. It is also conceivable that Chapters 6, 7, 8, and 9 can form the
core of a graduate course on vibrations.

We express our sincere thanks to our former students for their spirited
participation with regard to earlier versions of this book and for providing
feedback; to the reviewers of this manuscript for their constructive sugges-
tions; our colleagues Professor Bruce Berger for his careful reading of Chap-
ter I, Professor Amr Baz for suggesting material and examples for inclusion,
Professor Donald DeVoe for pointing us to some of the literature on micro-
electromechanical systems, and Dr. Henry Haslach for reading and com-
menting on parts of Chapter 9; Professor Miao Yu for using this book in the
classroom and providing feedback, especially with regard to Chapter 5; Pro-
fessor Jae-Eun Oh of Hanyang University, South Korea, for spending a gen-
erous amount of time in reading the early versions of Chapters 1 through 6
and providing feedback for the material as well as suggestions for the exer-
cises and their solutions; and Prolessor Sergio Preidikman of University of
Cdrdoba, Argentina, for using this book in the classroom, providing feedback
to enhance the book, as well as for pointing out many typographical errors in

oras aOr direftos de autor

Copyright 2009 Cengage Learning, Inc, All Rights Reserved. May not be copied, F:l:.‘EiI‘II'I-E-:{']:- or duplicated, in whole or in part.



xiv Preface

the first edition. We would like to thank Professor Bingen Yang of the Uni-
versity of Southern California, Professor Robert G. Parker of the Ohio State
University, and Prolessor Kon-Well Wang of the Pennsylvania State Univer-
silty for their helpful comments and suggestions during the preparation of
the first edition of this book. In addition, we would also like to thank Profes-
sor Leonard Louis Koss of Monash University, Australia; Professor Robert
(. Langlois of Carleton University, Canada; Professor Nicholas Haritos of the
University of Melbourne, Australia; and Professor Chuck van Karsen of the
Michigan Technological University for their constructive reviews while
preparing the second edition of this book. We are also thankful to Mr. William
Stenquist of Cengage-Learning for tirelessly supporting and encouraging the
first edition of this book and Mr. Christopher Carson of Cengage Learning for
his support of the second edition. Last, but not least, we are grateful to our
families for being tremendously supportive and understanding of us through-
out this ume-consuming undertaking.

B. Balachandran
. B. Magrabh

College Park, MD
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4 CHAPTER 1 Intoduction

many of the mathematical developments that are commonly taught in a vi-
brations course can be traced back to the 1800s and before. However, since
then, the use of these principles o understand and design systems has seen
considerable growth in the diversity of systems that arc designed with vibra-
tions in mind: mechanical, electromechanical and microelectromechanical
devices and systems, biomechanical and biomedical systems, ships and sub-
marines, and civil structures,
In this chapter, we shall show how to:

* Determine the displacement, velocity, and acceleration of a mass element.
*  Determine the number of degrees of freedom.
*  Determine the Kinetic energy and the work of a system.

PRELIMINARIES FROM DYNAMICS

Dynamics can be thought as having two parts, one being Kinematics and the
other being Kinetics. While kinematics deals with the mathematical descrip-
tion of motion, kKinetics deals with the physical laws that govern a motion.
Here, firsl, particle kinematics and rigid-body kinematics are reviewed, Then,
the notions of generalized coordinates and degrees of freedom are discussed.
Following that, particle dynamics and rigid-body dynamics are addressed and
the principles of linear momentum and angular momentum are presented.
Finally, work and energy are discussed.

1.2.1 Kinematics of Particles and Rigid Bodies
Particle Kinematics

In Figure 1.1, a particle in free space is shown, In order to study the motions
i i i y 5 - ? i o
of this particle, a reference frame K and a set of unit vectors® £, j, and k fixed

FIGURE 1.1

Farticle kinematics. /15 reference frame in which the unit vectors I f, and k are fixed
*As a convention throughout the book. bold and italicized letters represent vectors.
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3 CHAPTER 1 Intraduction

Consider the planar pendulum shown in Figure 1.3, where the orthogonal unit
vectors e, and e, are fixed to the pendulum and they share the motion of the
pendulum. The unit vectors i, j, and k, which point along the X. ¥ and Z di-
rections, respectively, are fixed in time. The velocity and acceleration of the
planar pendulum £ with respect to point () are the quantities of interest. The
position vector from point () o point P is writlen as

rF"IE — rg"l'j —+ rP"I'?
= hj — Les (a)

Making use of Egs. (1.2) and (1.8) and noting that both f and L are constant
with respect to time and the angular velocity @ = 8k, the pendulum velocity is

de
pFI% = [ = —Le # e-
dlt -
= — LAk % e; = Lie, (b}
and the pendulum acceleration is
f
HPJ'I{-:" AR {E_ﬂ
et
dl:Lé-Ej} i +
= '"=f_ﬂé‘1+f_ﬁm}{e|
dt
= Lfe, + LO(Bk X )
= [fe, + 16%; (c)

In arriving at Egs. (bj and (¢}, the following relations have been used.

EKE:‘__E]

kX e =e, (dl
FIGURE 1.3 ¥
Planar pendulum. The reference
frames are not explicitly shown in e

this figure, but it is assumed that
the unit vectors £ j, and k are fixed
in A and that the unit vectors e,
and e, are fixed in A" Y

il i

\

13 s al e ol - i
OO direios e autol
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12 CHAPTER 1  Introduction

Since the orientation of the unit vectors e] and e5 change with time due to the
rotation of the disc, we have

df;=m}i£‘=ék3={e'=f}e’
7 1 I 2
-I:-!‘E'er ’ ' v oo F

=w X ey = 0k X ey = —fle
dt

which leads to
V, = —r@singe; + (R + reose)fel + ricos ey — rfsin e

= —r{¢ + E:I']:-:in oe| + I:RI_‘]' + r{g + EJ}U{]&:@}EE

Consider a mass m that 15 held by elastic constraints and i1s located on a table
that 15 rotaling at a constant speed w, as shown in Figure 1.7. We shall deter-
mine the absolute velocity of the mass. We assume that point € is fixed in the
vertical plane, that the unit vectors e; and e; are fixed to the mass m, as shown
in Figure 1.7, and that &k = e, X e,. Then

Fo = FE

and the velocity is given by

FIGURE 1.7

Frictionless rotating table of radius L on which mass m is elastically constrained.

"M, 5. Clarke, “The Effect of Rotation upon the Natural Frequencies of a Mass-Spring System,”
JoSound Vibrgtion, 25003}, pp. B49-887 (2000,
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16 CHAPTER 1  Introduction

i
i ¥
}y —
i
Z
FIGURE 1.9

Free particle of mass m translating
along the i direction.

N dlmy)
St

4

= M (1.13)

which is referred to as Newton's second law of motion. The velocity in
Eq. (1.12) and the acceleration in Eq. (1.13) are determined from kinematics.
Therefore, for the particle shown in Figure 1.9, it follows from Eq. (1.13) that

Fi = mxi
or
F = mx

Dynamics of a System of n Particles

For a system of » particles, the principle of linear momentum is written as

i M dpl a’..lrp
F = F. = =
,2, * E, di clt
> a; .14
== it 5
1= | lr I d'r { jl

where the subscript ¢ refers to the ith particle in the collection of n particles,
F; is the external force acting on particle 1, p, is the linear momentum of this
particle, m, is the constant mass of the ith particle, and v, is the absolute ve-
locity of the ith particle. For the jth particle in this collection, the governing
equation takes the form

t dp, v

E F. = m

o

o MR ! di

EE15)

where F; is the internal force acting on particle j due to particle 1. Note that
in going from the equation of motion for an individual particle given by
Eq. {1.15) to that for a system of particles given by Eq. (1.14), it is assumed
that all of the internal forces satisfy Newton's third law of motion; that is, the
assumption of equal and opposite internal forces -':FJI, = —F”}.

If the center of mass of the system of particles is located at point G, then
Eg. (1.14) can be shown to be equivalent to

oz d{mvg; ) i
dt s

where m is the total mass of the system and v is the absolute velocity of the
center of mass of the system. Equation {1.16) is also valid for a rigid body.

It is clear from Eq. (1.11) that in the absence of external forces, the lin-
ear momentum of the svstem is conserved; that is, the linear momentum of the
svstem is constant for all fime. This is an important conservation theorem,
which is used, when applicable, to examine the results obtained from analy-
sis of vibratory models.

.|'.-._--_ proteqgidas por direitos d
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20 Introduction

CHAPTER 1

Pivot, O

\

L ]

S | T

FIGURE E1.6

angle ¢ 18 used to describe the angular displacement
of the pendulum from the vertical, determine the ab-

solute velocity of the pendulum.

Section 1.2.2

1.7 Determine the number of degrees of freedom for
the systems shown in Figure E1.7. Assume that the
length L of the pendulum shown in Figure E1.7a is con-
stant and that the length between each pair of particles
in Figure E1.7b is constant. Hinf: For Figure E1.7¢c, the
rigid body can be thought of as a system of particles
where the length between each pair of particles is
constant.

Section 1.2.3

1.8 Draw free-body diagrams for each of the masses
shown in Figure E1.6 and obtain the equations of mo-
tion along the horizontal direction by using Eq. (1.15).

1.9 Draw the free-body diagram for the whaole system
shown in Figure E].6, obtain the system equation of
motion by using Eq. (1.14) along the horizontal direc-
tion, and verify that this equation can be obtained
from Eq. (1.15)

1.10 Determine the linear momentum for the system
shown in Figure E1.5 and discuss if it is conserved.
Assume that the mass of the bar is M, and the dis-
tance from the point (7 to the center of the bar is L.

(s} Spherical pendufum

A
(b} System of three particles

~
(ch Free rigid body in space

FIGURE E1.7

1.11 Determine the zmgulur momentum of the system
shown in Figure 1.6 about the paint O and discuss if
it is conserved.

1.12 A rigid body is suspended from the ceiling by
two elastic cables that are attached to the body at the
points " and (", as shown in Figure E1.12. Point (G
is the center of mass of the body. Which of these
points would you choose to carry oul an angular-
momentum balance based on Eqg. (1.17)?

113 Consider the rigid body shown in Figure EI.13.
This body has a mass m and rotary inertia J,; about the

.I-..__.._ Droedgigas por direilos |

¢ Je aurol
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24 CHAPTER 2 Modeling of Vibratory Syslems

TABLE21 Quantity Units
Units of Components Lomprisinga _ _
Vibrating Mechanical Systemand ~ Translational motion

- : o Mass, m kg

Their Customary Symbaols Siiffnesi b h
Damping, ¢ Nl
External force, F N

Eotational molion

Mass moment of inertia, J kg-m’
Stiffness, &, Memdrad
Damping, ¢, M e sirad
External moment, A Mem

The inertia element stores and releases Kinetic energy, the stiffness ele-
ment stores and releases potential energy, and the dissipation or damping
element is used to express energy loss in a system. Each of these elements has
different excitation-response characteristics and the excitation is in the form
of either a force or a moment and the corresponding response of the element
15 in the form of a displacement, velocity, or acceleration. The inertia ele-
ments are characterized by a relationship between an applied force (or mo-
ment) and the corresponding acceleration response. The stiffness elements
are characterized by a relationship between an applied force (or moment)
and the corresponding displacement (or rotation) response. The dissipation
elements are characterized by a relationship between an applied force (or mo-
ment) and the corresponding velocity response. The nature of these relation-
ships, which can be linear or nonlinear, are presented in this chapter. The units
associated with these elements and the commonly used symbols for the dif-
ferent elements are shown in Tabhle 2.1.

[n this chapter, we shall show how to:

=  Compute the mass moment of inertia of rotational systems.

* Determine the stiffness of various linear and nonlinear elastic components
in translation and torsion and the equivalent stiffness when many individ-
ual linear components are combined,

*  Determine the stiffness of fluid, gas, and pendulum elements.

*  Determine the potential energy of stiffness elements,

*  Determine the damping for systems that have different sources of dissipa-
tion: viscosity, dry friction, fluid, and material.

*  Construct models of vibratory systems.

INERTIA ELEMENTS

Translational motion of a mass is described as motion along the path followed
by the center of mass. The associated inertia property depends only on the to-
tal mass of the system and is independent of the geometry of the mass distri-
bution of the system. The inertia property of a mass undergoing rotational
motions, however, 15 a function of the mass distribution, specifically the mass
moment of inertia, which is vsually defined about its center of mass or a fixed
point 2. When the mass oscillates about a fixed point (2 or a pivot peint (), the
rotary inertia J; is given by

:__:i_'.- .-.I C _'_'."-'_'-i I 1 : ,: - all :
Copyright 2009 Cengage Learning, Inc, All Rights Reserved. May not be copied, scanned, or dupl
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28 CHAPTER 2 Modeling of Vibratory Systems

and therefore, after making use of the parallel axis theorem, the mass moment
of inertia about the point {J is

(h)

-

By U s B s 4
J“=Jﬁ+m(i) =]_]mf."+4m|’f=3mf,

In Figure 2.3, a slider mechanism with a pivot at point (J is shown. A slider of
mass m, slides along a uniform bar of mass m;. Another bar, which is pivoted
at point O, has a portion of length £ that has a mass m;, and another portion
of length ¢ that has a mass m.. We shall determine the rotary inertia J,, of this
system and show its dependence on the angular displacement coordinate g.
It @, is the distance from the midpoint of bar of mass m_ to () and a,, is the
distance from the midpoint of bar of mass m; to (), then from geometry we

find that
g O
ﬁ — ,.»1“;.} = g° + b* — 2ab cos ¢

ai(¢) = (bf2)* + @ — abcos ¢
i alw) = [ﬁl.l"i:]! + a° — ae cos (7 — ©) ia)

and hence, all moetions of the system can be described in terms of the angular
coordinate ¢. The rotary inertia J of this system is given by

EIJ_,_.-""'-“II. JI’J L J’".‘ + jmm [.{p} -+ *'Irm;_ |:|.’,|D} + Jr.u, {':P:I (b)

iy,

]

il
/ |

where
FIGURE 2.3 |
Shider mechanism, Jo = o m 2, S L) = mr ()
|
b’ 5 i -
T, () = my, T + myai = my, 3 + a — abcos ¢
L) "_E:
Jo () = m, = + mas = m, 3 + a* — ae cos(m — q::I] (c)

In arriving at Eqgs. (b) and (c), the parallel-axes theorem has been used in de-
termining the bar inertias J,, | J’,,,e., and J'mr. From Eqgs. (b)and (c), it is clear that
the rotary inertia J of this system is a function of the angular displacement ¢.

STIFFNESS ELEMENTS

2.3.1 Introduction

Stiffness elements are manufactured from different materials and they have
many different shapes. One chooses the type of element depending on the re-
quirements; for example, to minimize vibration transmission from machinery

LOras oroegiaas oor airelios ae authil
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32 CHAPTER 2 Modeling of Vibratory Systems
i i

Vig) = %mma=

i} il

I .5
kgdd = = k- (2.12)

—

o

Combinations of Linear Springs

Different combinations of linear spring elements are now considered and the
equivalent stiffness of these combinations is determined. First, combinations
of translation springs shown in Figures 2.6b and 2.6¢ are considered and fol-
lowing that, combinations of torsion springs shown in Figures 2.7a and 2.7b
are considered.

When there are two springs in parallel as shown in Figure 2.6b and the
bar on which the force £ acts remains parallel to its original position, then the
displacements of both springs are equal and, therefore, the total force is

.!I':l:.f} = ]L-||:_"‘;':| + f'.'z':.f:l
= kox + kax = (& + ko)x = kx (2.13)

where F(x) is the resulting force in spring &, j = 1, 2, and k, is the equivalent
spring constant for two springs in parallel given by

k, =k + k (2.14)

e

When there are two springs in series, as shown in Figure 2.6¢, the force
on each spring is the same and the total displacement is

X = X + Xy
* U I | F
_ =( " >F= (2.15)
ko ks ko & K,

where the equivalent spring constant £, is

k—(]‘F])]_ kiks (2.16)
T\ ok & + ky '

ia) ih)

FIGURE 2.7
Twao torsion springs: (a) parallel combination and (b} series combinatian.

Lbras protegigas por direitos de autol
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36 CHAPTER 2 Modeling of Vibratory Systems

TABLE 2.3

{continped) 12 Cantilever plate. constant
thickness, Tarce al center
of free edge®

DADGER BT s T
—_: Poisson's ratio,
B2t — %) a == h

A: area of cross section; B Young™s modolus; G shear modulus; § area moement of inertia or polar
mement of inertia
‘5. Timeshenke and 5. Woinowsky-Kricger, Teeary of Plares and Shells, MoGraw-Hill, New York. (19559

p. 206,
"5 Timoshenko and 5. Wolnowsky-Kricger, ihéd, po 649,
"5, Timoshenko and 5. Woinowsky-Krieger, ibid, p. 210,

1504} —
k = 10568 N/m

F (M)

Fatied curve
U Data
i

(L1 (.05 il (.05 0.l

xim)

FIGURE 2.8

Experimentally obtained data used to determine the linear spring constant k.

parameter identification; identification and estimation of parameters of
vibratory systems are addressed in the field of experimental modal analysis.”
In experimental modal analysis, dynamic loading is vsed for parameter
estimation. A further discussion is provided in Chapter 5, when system input-
output relations (transfer functions and frequency response functions) are

considered.
Next, some examples are considered to illustrate how the information

shown in Table 2.3 can be used to determine equivalent spring constants for
different physical configurations.

D, 1. Ewing, Modal Testing: Theory and Practive, John Wiley and Sons, NY (1984).

Copyright 2009 Cengage Learning, Inc, All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.
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40 CHAPTER 2 Modeling of Vibratory Systems

Flexure
Mass

FIGURE 2.11

Fixed-fixed flexure used in a microelectromechanical system. Source: G.K Fedder, "Simulation

of Microelectromechanical Systems”, Fh.D. Dissertation, Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley, CA, {1934). Reprinted with permis-

sion of the autheor,

where the area moment of inertia is given by

_ b’
12

! (h)

because the bending axis is along the Y direction. Since each of the four flex-
ures experiences the same displacement at its end in the Z direction, this is a
combination of four stiffness elements in parallel; hence, the equivalent stiff-
ness of the system is given by

'k-r” i 4 Il!i:lle:zulm

48 Ef
W _j'L_i_ ic)
Thus,
48(150 x 10")(2 x 10 %)(2 x 10 %)
ke = — = — N/m
12{100 x 107%)
= 9.6 N/m (d)

Let us reexamine the pair of springs in parallel shown in Figure 2.6b. Now,
however, we remove the restriction that the bar to which the force is applied
has to remain parallel to its original position. Then, we have the conliguration
shown in Figure 2.12. The equivalent spring constant for this configuration
will be determined.

™ S e e L s S e S
Lbras proegiaas por aireltos e autol

Copyright 2009 Cengage Learning, Inc, All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part,



Image
not
avallable




Image
not
avallable




Image
not
avallable




44 CHAPTER 2 Modeling of Vibratory Systems

P
.
t \\}w
} L Y
- b s

FIGURE 2.14

Nonlinear stiffness due to geometry: spring under an initial tension, one end of which is
constrained ta maove in the vertical direction,

is initially under a tension force T, = £5,. When the spring is moved up or down
an amount xin the vertical direction, the force in the spring is

Fx) = k8, + VL + 2 — L) (a)
The force in the x-direction is obtained from Eq. (a) as
R .
Fix) = F.siny = N
ks, (V2 + ¥ - L)
S =+ B . (h)
VIS + x LV Sk S

which clearly shows thal the spring force opposing the motion is a nonlinear
function of the displacement x. Hence, a vibratory model of the system shown
in Figure 2.14 will have nonlinear stiffness.

Cubic Springs and Linear Springs

If, in Eq. (b), we assume that [x/L] <= | and expand the denominator of each
term on the right-hand side of Eq. (b) as a binomial expansion and keep only
the first two terms, we obtain

X K, xy
Flx) = k8, 7 F N ﬁr,](f) (c)

| i

When the nonlinear term is negligible, Eq. (¢} leads to the following linear
relationship
X am Z

= I, d
[ . (d)

Fx) = ké, I

From Eqg. id), it is seen that the spring constant is proportional to the initial
tension in the spring,

Another example of a nonlinear spring is one that is piecewise linear as
shown in Figure 2.15. Here, each spring is linear; however, as the deflection
increases, another linear spring comes into play and the spring constant
changes (increases). An illustration of the effects of this type of spring on a
vibrating system is given in Section 4.5.1.

Obras protegidas por direitos de auto
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48 CHAPTER 2 Modeling of Vibratory Systems
or, from Eq. (2.36),

mgl.
- ¥

L

Vig) (1 — cos @) (2.37h)
When the angle of rotation # about the upright position # = 0 is “small,”
we can use the Taylor series uppmx]mutiun”

-

cos@ =1 — = ot R (2.38)

—

and substitute this expression into Eq. (2.37b) to ohtain

1 mel™ ., 1
Vip) = 2( : )r;- = k8 (2.30)

where the equivalent spring constant is

mgl.
= {(2.40)

£ 2
Figure 2.18(b) In a similar manner, for “small” rotations about the upright
position # = ) in Figure 2.18b, we obtain the increase in potential energy for
the system. Here it is assumed that a weightless bar supports the mass m,.
Choosing the reference position as the bottom positien, we obtain

L

| T
V0) ~  miglt® = _ kp° (2.41)

where the equivalent spring constant is
k., = mgL (2.42)

[n the configuration shown in Figure 2.18b, if the weightless bar is re-
placed by one that has a uniformly distributed mass m, then the twtal potential
enerey of the bar and the mass 1s

1 it

1 % 5 1
Vig) = 3 mglf© + > meld = 5 ( -

.
+ m,)giﬂ' B k- (2.43)

where the equivalent spring constant is

k= (’” + m,)gL (2.44)

Figure 2.18(c) When the pendulum is inverted as shown in Figure 2. 15c¢,
then there is a decrease in potential energy; that is.

l -
Vig) = = my e La- (2.45)

*T. B. Hildebrand, Advanced Calculus for Applications, Prentice Hall, Englewood Cliffs NJ
(1976).
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52 CHAPTER 2 Modeling of Vibratary Systems

o
f
' ko kakof(ky + kgdk
B —— ——
m i
§ -I'.'I.l.' t'l_-:.l'
l:ml %
{a) {b)
X
—_—
l‘:I"
.
L

el

FIGURE 2.22
|a) Linear vibratory system; (b] free-body dizgram of mass m; and (o) equivalent system,

In Figure 2.22¢, the springs and dampers shown in Figure 2.22a have
been collected and expressed as an equivalent spring and equivalent damper
combination. Thus, we have

It has been experimentally determined that the damper force-velocity rela-
tionship is given by the function

F(#) = (4 N-s/m)& + (0.3 N-s*/m)# (a)

We shall determine the equivalent linear damping coefficient arcund an oper-
ating speed of 3 m/s. To determine this damping coefficient, we use Eq. (2.47)
and Eq. (a) and arrive at

dF (X ,,
Cp = l: ) = 4 N+s/m + (0.9 N+s*/m’ )|, 5 il
X £=3mfs (=0
= 4 N-s/m + (0.9 N-s°/m*) % (3" m*/s")
= 12.1 N-s/m (b}

Obras protegidas por direitos de autol
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56 CHAPTER 2
FIGURE 2.24
Microelectromechanical accelerom-
eter and a vibratory madel of this
sensor. Source: From Systems Dy-
namics and Contral 15t edition by
Umez-Ercnini. € 1299, Reprinted
with permission of Nelson, a divi-
sian of Thomson Learning:

www. thomsonrights.com.

Fax 800 730-2215,
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End mass m

Crround
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[Fixed cmd —

Fres end
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Electrostans
foree F

End mass i T-‘f

Equivalent structure
shilfness &

iy

Base scceleration _i"T

Single-degrec-ol-freedom sysiem

2.5.3 The Human Body

In Figure 2.25, the human body and a vibratory model vsed to study the re-
sponse of this physical svstem when subjected to vertical excitations are
shown. While the vibratory model used in the previous section has only one
discrete inertia element and one discrete spring element, the model'® shown
in Figure 2.25 has many inertial, spring, and damper elements.

Since many independent displacement variables are needed to describe
the motion of this physical system, this vibratory model is an example of a
svstem with muluple degrees of reedom. The response of systems with mul-
tiple degrees of freedom is treated in Chapters 7 and 8.

The human body is highly sensitive to vibration levels. While the body
may sense displacements with amplitudes in the range of a hundredth of a
mm, some of the components of the ear can sense even smaller displace-
ments. In the low-frequency range from 1 Hz to 10 Hz, the perception of mo-
tion is said to be proportional to acceleration, and in the mid-frequency range

“M. P Norton, Fundamenials af Nedse and Vitrarion Analysis for fngineers, Cambridge
L niversity Press, New York (1989).
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60 CHAPTER 2

- r - u
Modeling of Vibratary Syslems

fixed at both ends, while the beam model used for the work piece 1s consid-
ered lixed at one end and hinged or Iree at the other end where it 15 being cut.

In Scction 4.4, the stability of a machine ool 15 determined from a vi-

bratory model to aveid undesirable cutling conditions called chatter. This type

of analysis can be used o choose parameters such as width of cut, spindle

rpm, etc. In Chapter 9, vibrations of beams used in the model in Figure 2.27
are discussed at length.

DESIGN FOR VIBRATION

Principles that govern single degrec-ol-Ireedom systems, multiple degree-of-

freedom systems, and continuous vibratory systems are covered in this book

and are presented along with information needed to experimentally, numeri-

cally, and analytically investigate a vibratory system. In Figure 2.28. we show

Moddel
Assumpiions

| degrec-of-trecdom % !

2 dezree-of-freedom E ¢
+ [

b |

b o . B

— N degree-of-freedom ¢
|
Heam : ¢
Excitation
Fearee

1

Fase

EE
WVelocity

34
1

[isplacement

Design for Vibration Objectives

Isolaticn
Absorption
MNatural frequency
Damping ratio
Filter

Muode shape

I

v

Experiments and Measurements

Data Collection and
Parameter Identification
Mass
StlTness
Limgar
Monlinear
Drimping
WViscous
Fluid
Materal
[y friction
Syvstem Characterization
Matural frequency
Impulse response
Transler functien
Excitation Characterization
Harmonic
Iransient
Random

Mumerical Evaluation and Analvsis

Response Characteristics

Tirme Domain -
Lvizplacement

FIGURE 2.28
Design for vibration.

Velocity
Acceleration
Force at base

= Freguency Domain
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CHAPTER 2

Maodeling of Vibratary Systems

FIGURE E2.15

Section 2.3.3

2.16 Consider the two nonlinear springs in parallel that
are shown in Figure E2.16. The force-displacement
relations Tor each spring are, respectively,

F {-_—] — .ﬁ:_l:.r + kl,:r.x':’

!

ji=1,2

a) Obtain the expressions from which the equivalent
spring constant can be determined.

b) If F = 1000 N, &k, = &; = 50,000 N/m, and @@ =
2m °, determine the equivalent spring constant,

!
Py % :q; Falx)
-4—1 ¥
X "
il ]

:

FIGURE E2.16

217 Consider the two nonlinear .'-,']‘.lringgﬁ N serics
shown in thurt E2.17. The I'un:u:-dif-;pliiuc:munt rela-
tions for each spring are, respectively,

-y

Fix) = kx + kax® j=1,2

a) Obtain the expressions from which the equivalent
spring constant can be determined.

b) If F = 1000 N, &, = 50,000 N/m. &, = 25,000 N/m,
and ¢ = 2 m 3, determine the equivalent spring
constant.

Copyright 2009 Cengage Learning, Inc, All Rights Reserved. May not be copied, scanned, or dupli:a!:m], in whole or in

FIGURE E2.17

2.18 Consider the data in Table E2.18 in which the
experimentally determined tire loads versus tre de-
Hections have been recorded. These data are for a set
of dual tires and a single wide-hase tire."¥ The infla-
tion pressure for all tires is 724 kN/m . Examine the
stilfness charactenistics of the two diflerent tire sys-
tems and discuss them.

TABLE E2.18
Tire Load Versus Deflection Data

Tire Deflection

Tire Load Dual Tire Single Wide-Base
M) (mm) Tire imm)
0 i i
BEUG.4 7.62 0.2
17793 I4 14
20689 19 215
353586 24.1 56
44482 2719 41.9

Section 2.3.4

213 Consider the manometer shown in Figure 2.16
and seal the ends. Assume that the initial gas pressure
of the sealed system is P, and that L, is the initial

], C. Tielking, “Conventional and wide base radial tyres,” in Pro
ceedings of the Third International Symposium on Heavy Yehicle
Weights and Dimensiens, D). Cebon and C. G. B. Mitchell, eds.,
Cambridge, UK, 28 June-2 July 1992, pp. 182-190.

part.
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aprings, masses, and dampers are used 1o model vibrations systems. [n the motoreycle, the coil spring in parallal with a viscous
damper is attached to a mass composed of the tire and brake assembly. In the wind turbine, the mass of the propellers is supported
by the column, which acts &s the spring. [ Source: Coben/Ostrow / Getty Images; PES Media, Inc. / Getty Images.|

68
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72 CHAPTER 3 Single Degreeoitreadom Systems

The directions of different forces along with their magnitudes are shown in
Figure 3.1. Note that the inertia force —mx j is also shown along with the free-
body diagram of the inertia element. Since the spring force is a restoring force
and the damper force is a resistive force, they oppose the motion as shown in
Figure 3.1. Based on Eq. (3.1b), we can carry out a force balance along the
j direction and obtain the resulting equation

: _— cye dr, d*r
e+ mej— (kx + k8,)f — ¢ pl ~ m-—j=10 (3.3)
el et
Fxtemnal forces ocling Spring force ucting  Damping force Inerin foroe
00 Ay Al [EH R H A BN On mekss

Upon making use of Eq. (3.2), noting that L and &, are constants, and rear-
ranging terms, Eq. (3.3) reduces to the following scalar differential equation
d*x ey

m T + 5 ¥ kix + 8,) = flr) + mg i(3.4)

Static-Equilibrium Position
The static-equilibrivm position of a system is the position that corresponds 1o
the system’s rest state; that is, a position with zero velocity and zero acceler-
ation. Dropping the time-dependent forcing term f(#) and setting the velocity
and acceleration terms in Eq. {3.4) to zero, we find that the static-equilibrium
position is the solution of

klx + 8,) = mg (3.5)
It, in Eq. (3.5), we choose

2 mg

'l:l_.” T, ;: {3-&']
we find that x = 0 is the static-equilibrium position of the system. Equa-
tion (3.6} is interpreted as follows. Due to the weight of the mass m, the spring
is stretched an amount &, so that the spring force balances the weight mg. For
this reason, 8, is called the static displacement. Recalling that the spring has
an unstretched length L, the static-equilibrium position measured from the
origin (7 is given by

Xy = Xgyj = (L 4 ﬁ:rjj (3.7)

which s the rest positon of the system. For the vibratory system of Fig-
ure 3.1, it is clear from Eq. (3.0) that the static-equilibrium position is deter-
mined by the spring force and gravity loading. An example of another type of
static loading is provided in Example 3.1.

Equation of Motion for Oscillations about the Static-Equilibrium Position
Upon substituting Eq. (3.6) into Eq. (3.4), we obtain

j* !
meI f-l— cfx+kx:f[ﬂ (3.8)
dr- dt *
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single Degresoltresdom Syslems

A
d°x .
m—— kx = (h)
i~
Comparing Eqgs. (g) and (h), it i1s clear that the equations have different stiff-

ness ermms.

3.2.2 Moment-Balance Methods

For single degree-of-freedom systems that undergo rotational motion, such as
the system shown in Figure 3.3, the moment balance method is useful in de-
riving the governing equation. A shaft with torsional stiffness &, is attached to
a disc with rotary inertia J; about the axis of rotation, which is directed along
the k direction. An external moment M1 acts on the disc, which is immersed
in an oil-filled housing. Let the variable # describe the rotation of the disc, and
let the rotary inertia of the shaft be negligible in comparison to that of the disk.

The principle of angular momentum given by Eq. (1.17) is applied to ob-
tain the equation governing the disc's motion. First the angular momentum A
of the disc is determined. Since the disk is a rigid body undergoing rotation in
the plane, Eqg. (1.20) is used to write the angular momentum about the center

of mass of the disc as
H = J.0k

Thus, since the rotary inertia J;; and the unit vector k do not change with time,
Eq. {1.17) is rewritten as

M — J;6k =0 (3.11)

where M is the total external moment acting on the free disk. Based on the
free-body diagram shown in Figure 3.3, which also includes the inertial mo-
ment —J; 8k, the governing equation of motion is

Shaft with cquivalent
wrsional stiffness &;

FIGURE 3.3

Min

&

o i

L

N
\

b Axis of
rotation 4
\\ I
Disk with rotary incrtia J; 14 "" it
aboul rolation axis n,

Howsimg Tled with oil

EY

ih)

la) A disc undergoing rotational motions and (b) free-body diagram of this disc in the plane normal to the axis of rotation
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80 CHAPTER 3 Single Degreeoitreadom Systems

3.3.1 Natural Frequency

Translation Vibrations: Natural Frequency
For translation oscillations of a single degree-of-freedom system, the natiral
Jrequency w, of the system is delined as

|'I b

w, = 2af, = E"I - rad/s (3.14)

where K is the stiffness of the system and m is the system mass. The quantity
fr which is also referred to as the natural frequency, has the units of Hz.

For the configuration shown in Figure 3.1, the vibratory system exhibits
vertical oscillations. For such oscillations, we make use of Eq. (3.6) and
Eqg. (3.14) and obtain

w, = 2w, = \\'III § rad/s (3.15)

Lo

where 8, is the static deflection of the system.

Rotational Vibrations: Natural Frequency

Drawing a parallel to the definition of natural frequency of translation mo-
tions of a single degree-of-freedom system, the natural frequency for rota-
tional motions is defined as

w, = 2af, = \'I 7 rad/s (3.16)

where &, is the torsion stiffness of the system and J is the mass moment of in-
ertia of the system.

Design Guideline: For single degree-of-frecdom systems, an in-
crease in the stiffness or a decrease in the mass or mass moment of in-
ertia increases the natural frequency, whereas a decrease in the stiffness
and/or an increase in the mass or mass moment of inertia decreases the
natural frequency. Equivalently, when applicable, the greater the static
displacement the lower the natural frequency; however, from practical
considerations too large of a static displacement may be undesirable,

Period of Undamped Free Oscillations

For an unforced and undamped system, the period of free oscillation of the
system is given by

T==-= (3.17)

_,|r_;r m.ll

Thus, increasing the natural frequency decreases the period and vice versa.

Obras protegidas por direitos de autol
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3.3 Natural Frequency and Damping Factor 83

W e
w=o(")
i

For “small” amplitude vibrations about x,, the linear equivalent stiffness of
this spring is determined from Egs. ic) and (d) to be

o dFix) ‘ B fw(,r,,)*' !
4  dx |._. B\b

_ fh:-( W)" /e
b\ a (e)

Then, from Eqgs. (3.14) and (e}, we determine the natural frequency of this
syslem as

. | IIII 't‘-."rlr N | I'Il B (H’r) e
j.'? - jTr'- \I’II ]‘1-":""2 - ?:‘J_ "HIIII b |

1 Il'lawc ( W) /20 y o
2ar \"u'l f &l 2 "

Representative Spring Data

We now consider the representative data of a nonlinear spring shown in
Figure 3.5a. By using standard curve-fitting 1:|rr_n::|;:+ium:;,'T we find that g =
2500 N, &6 = (L.01] m, and ¢ = 2.77. After substituting these values into
Eq. (f), we arrive at the natural frequency values shown in Figure 3.5b. It
is seen that over a sizable portion of the load range, the natural frequency of
the system varies within the range of *8.8%. The natural frequency of
a system with a linear spring whose static displacement ranges from 12 mm
to 5 mm varies approximately from 4.5 Hz (=V9.8/0.012/2% Hz) to
7.0 Hz I:—“U’EF}.E,-"G.DUE {27 Hz) or approximately =22% about a frequency
of 3.8 Hz.

3.3.2 Damping Factor

Translation Vibrations: Damping Factor

For translating single degree-of-freedom systems, such as those described by
Eq. (3.8}, the damping fuctor or damping ratio ¢ is defined as

C c e,
Zma, Ed'n..,-"r-km 2K

(3.18)

where ¢ is the system damping coefficient with units of N-s/fm, & is the system
stiffness, and m is the system mass. The damping factor is a nondimensional
quantity.

"The MATLAB function Lageourvefit from the Optimization Toolbox was used.
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la) Curve fit of nonlinear spring data: squares—experimental data values; solid line—fitted curve;
|b) natural frequency for data values in {a) above: horizontal broken lines are within + 8.8% from
the salid harizontal ling.
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3.3 Natural Frequency and Damping Factor 85

Critical Damping, Underdamping, and Overdamping

Defining the quantity ¢, called the crifical damping, as

c. = 2mw, = 2N\ km (3.19)

L

the damping ratio 1s rewritten in the form
- ¢ -
L = (3.20)

Whene¢ = ¢, ¢ = 1. The significance of ¢, is discussed in Section 4.2, where
Iree oscillations of vibratory systems are considered. A system for which
0 < { << 1 iscalled an underdamped system and a system for which £ = 1 is
called an overdamped system. A system for which £ = 1 is called a crirically
damped system,.

Rotational Vibrations: Damping Factor

For rotating single degree-of-freedom systems such as those described by
Eq. (3.13), the damping rafio { is defined as
¢, 7
6= 20w - AN ] 2
alad = ¢
where the damping coefficient ¢, has the units N-m-s/rad.

From Egs. (3.14) and (3.16), we see that the stiffness and inertia proper-
ties affect the natural frequency. From Egs. (3.18) and (3.21), we see that
the damping ratio is affected by any change in the stiffness, inertia, or damp-
ing property. However, one can change more than one system parameter in
such a way that the net effect on £ remains unchanged. This is shown in Ex-
ample 3.8,

Governing Equation of Motion in Terms of Natural Frequency
and Damping Factor

Introducing the definitions given by Eqs. (3.14) and (3.18) into Eq. (3.8), we

obtain
i* clx ; il
f + 2w, : + wpx = }
et elt I (3.22)

The significance of the quantities w, and £ will become apparent when the
solution to Eq. (3.22) is discussed in detail in the subseguent chapters. If we
introduce the dimensionless time ™ = @, !, then Eq. (3.22) can be written as

e “x : Tdﬁ.‘ s fir)
are T odr K 3.23)

It is scen from Eq. (3.23) that the natural frequency associated with the non-
dimensional system is always unity (one), and that the damping factor £ is the
only system parameter that appears explicitly on the left-hand side of the equa-
tion. We shall use both forms of Egs. (3.22) and (3.23) in subsequent chapters.

Cbras protegidas por direitos de autor

Copyright 2009 Cengage Learning, Inc, All Rights Reserved. May not be copied, :-:L*annéd:- r:n-r Hup[i:alm], in w-h;.'.nle OF In part,



86 CHAPTER 3  Single Degreeoffresdom Systems

In the absence of forcing, that is, when f{r) = 0, the motion of a vibra-
tory system expressed in terms of nondimensional quantities can be described
by just one system parameter. This fact is further elucidated in Section 4.2,
where free oscillations are considered and it is shown that the qualitative nature
of these oscillations can be completely characterized by the damping factor. In
the presence of forcing, that is, f{7) # 0, both the damping factor { and the
natural frequency m, are important for characterizing the nature of the re-
sponse. This is further addressed when the forced responses of single degree-
of-freedom systems are considered in Chapters 5 and 6.

Since the damping coefficient is one of the most important descriptors of
a vibratory system, it is important to understand its interrelationships with the
component’s parameters m (or J), ¢ (or ¢;), and & (or k). We shall illustrate
some of these relationships with the following example.

A system is initially designed to be critically damped—that is, with a damping
factor of £ = 1. Due to a design change, the mass of the system is increased
20%—rthat is, from m to 1.2m. Will the system still be critically damped if the
stiffness and the damping coefficient of the system are kept the same?

The definition of the damping factor is given by LEg. (3.18) and that for
the critical damping factor is given by Eq. (3.1%). Then, the damping factor of
the system after the design change is given by

c C

e =091 ——=091 —=0.9] X 1= 0.9

2NV K(1.2m) z‘v”km <

Therefore, the system with the increased mass is no longer critically damped,;
rather, it is now underdamped.

An engineer linds that a single degree-of-freedom system with mass m, damp-
ing ¢, and spring constant £ has oo much static deflection &,,. The engineer
would like to decrease 8, by a factor of 2, while keeping the damping ratio
constant. We shall determine the different options.

Noting that this is a problem invelving vertical vibrations, it is seen from
Eqgs. (3.6), (3.15), and (3.18) that

g
[ ||:.
¢ |8, 8y 1 [%8,
28 [ = e N (a)
m"i" 4 gm‘ H'I-\I g

From Egs. (a), we see that there are three ways that one can achieve the goal.
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88 CHAPTER 3 Single Degreeoitreadom Systems

Furthermore, since

-
2= (J)
Vim
the damping coefficient has to be reduced by a factor of N 2; that is,
e
O — 7 (k)
W2

Thus, for 8,, — 8,,/2 and & held constant, m — m/2 and ¢ —» -::,-'“"-.HIE.

Notice that in all three cases the natural frequency increases by a factor
of V2. The results of this example can be generalized to a design guideline
isee Exercises 3.22 and 3.23).

In the next two sections, the governing equations for ditferent types of
damping models and forcing conditions are presented. For all of these cases,
translational motions are considered for illustrative purposes, and the equa-
tions are obtained by carrving out a force balance along the direction of mo-
tion. The form of the governing eguations will be similar for systems involy-
ing rotational motions.

GOVERNING EQUATIONS FOR DIFFERENT TYPES OF DAMPING

The governing equations of motion for systems with different types of damp-
ing are oblained by replacing the term corresponding (o the force due 1o vis-
cous damping with the force due to either the fluid, structural, or dry friction
type damping. Solutions for different periodically Torced systems are given
in Section 3.8, where equivalent viscous damping coefficients for different
damping models are obtained.

Coulomb or Dry Friction Damping

After using Eq. (2.52) to replace the ¢cx term in Eq. (3.8}, the governing equa-
tion of motion takes the form

d’x
m—— + kx + pmgsgn(x) = f(1) (3.24)
idf AR oo R
malnear dry
friclion force

which is a nonlinear equation because the damping characteristic is piece-
wise linear. This piece-wise linear property can be used to find the solution of
this system.

Fluid Damping
Adter using Eqg. (2.54) 10 replace the cx term in Eq. (3.3), the zoverning equa-
tion takes the form
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d*x 2
m—s + cqlk| & + kx = f[t) (3.25)
E' e ——
womlanewr uid
dampang foroo

which is a nonlinear equation due o the nature of the damping.

Structural Damping
After using Eq. (2.57) to replace the ¢x term in Eq. (3.8), we armive at the gov-
erning equation

7

d X ;
m fi’j + kfwsgn(x)x| + kx = fl1) (3.26)
L

Equation (3.26) is further addressed in Section 5.8.

GOVERNING EQUATIONS FOR DIFFERENT TYPES OF APPLIED FORCES

In Section 3.2, we addressed governing equations of single degree-of-
freedom systems whose inertial elements were subjected to direct excitations,
Here, we address governing equations of single degree-of-freedom systems
subjected to base excitations, systems excited by rotating unbalance, and sys-
tems immersed in a fluid.

3.5.1 System with Base Excitation

The base-excitation model is a prototype that 15 useful for studying buildings
subjected o earthguakes, packaging during transportation, vehicle response,
and for designing acceleromelers (see Section 5.6). Here, the physical system
ol interest is represented by a single degrec-of-freedom system whose base is
subjected to a displacement disturbance vif), and an equation governing the
motion of this system is sought to determine the response of the system xif).

If the system of interest is an automaobile, then the road surface on which
it is traveling can be a source of the disturbance w1} and the vehicle response
x(f)isto be determined. To avoid failure of electronic components during trans-
portation, a base-excitation model is used to predict the vibration response of
the electronic components. For buildings located above or adjacent to subways
or above ground railroad tracks, the passage of trains can act as a source of
excitation to the base of the building. In designing accelerometers, the ac-
celerometer responses to different base excitations are studied to determine the
appropriate accelerometer system parameters, such as the damping factor.

A prototype ol a single degree-of-freedom system subjected to a base ex-
citation is illustrated in Figure 3.6. The system represents an instrumentation
package being transported in a vehicle. The vehicle provides the base excita-
tion y(f} to the instrumentation package modeled as a single degree-of-
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FIGURE 3.6
Hase excilation and the free-body diagram of the mass.

freedom system. The displacement response xif) is measured from the sys-
tem’s static-equilibrium position. In the system shown in Figure 3.6, it is as-
sumed that no external force is applied directly to the mass; that i_'-;,ﬂﬂ = ().
Based on the free-body diagram shown in Figure 3.6, we use Eq. (3.1b) to
obtain the following governing equation of motion

d*x dx dy

be— + kx=c— + ky :
mdr? C & o -Ldf Ky {3.27)

which, on using Eqs. (3.14) and (3.18), takes the form

d*x 1 3 dy 1
=+ 2w, + wyx = 2w, + w, ¥y

i
dr” i il (3.28)

The displacements yif) and x(1) are measured from a fixed point € located in
an inertial reference frame and a fixed point located at the system’s static-
equilibrium position, respectively. If the relative displacement is desired, then

we let
21) = x(1) — 30 (3.29)
and Eq. (3.27) is written as
d*z iz d*y
= ip— Ay = = 330
TP " ar W

while Eq. (3.28) becomes
’z g dz i .n’zl'lr‘ (331

= + 2w, Wog = ——
dr? " dt : dt*

where ¥(7) is the acceleration of the base.

3.5.2 System with Unbalanced Rotating Mass

As discussed in Chapter |, many rotating machines such as fans, clothes dryers,
internal combustion engines, and electric motors, have a certain degree of un-
balance. In modeling such systems as single degree-of-freedom systems, it is as-
sumed that the unbalance generates a force that acts on the system’s mass. This
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System with unbalancad rotating mass and free-body diagrams.

force, in turn, is transmitted through the spring and damper to the fixed base. The
unbalance is modeled as a mass m, that rotates with an angular speed w, and
this mass is located a fixed distance e from the center of rotation as shown in
Figure 3.7. Note that in Figure 3.7, M does not include the unbalance m,.

For deriving the governing equation, only motions along the vertical
direction are considered, since the presence of the lateral supports restrict
motion in the § direction. The displacement of the system xi(f}) is measured
from the system’s static-equilibrium position. The fixed point €2 is chosen to
coincide with the vertical position of the static-equilibrium position. Based
on the discussion in Section 3.2, gravity loading is not explicitly taken into
account.

From the free-body diagram of the unbalanced mass m,, we find that the
reactions at the point &' are given by

N, = —m,[x — ew” sin i)
ﬂ:l E }
N, = m,ew” cos w! (3.32)
and from the free-body diagram of mass M we find that

{°x d
ME2 B ik =n, (3.33)
= elf :
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Vibrations of a system immersad in
a fluid.

Then, substituting for N, from Egs. (3.32) into Eq. (3.33), we arrive at the
equation of motion

i

: d“x elx =9 )
(MY ) —+ ¢ F ky = m ew” sin w! (3.34)
elt” dt

which is rewritien as

dx il ; Flw) | .
2 + 28w, e @px = sin w (3.35)
where

m=M+m,

[ k
Wy, = ‘\Iul m
Flw) = m, ew” (3.36)

In Egs. (3.35) and (3.36), F(w) is the magnitude of the unbalanced force. This
magnitude depends on the unbalanced mass m, and 1t 1s proportional o the
square of the excitation frequency. From Eq. (3.6), it follows that the static
displacement of the spring is

B M+ m,)g  mg

8, = = (3.37)
- K K

3.5.3 System with Added Mass Due to a Fluid

Consider a rigid body that is connected to a spring as shown in Figure 3.8. The
entire system is immersed ina fluid. From Eq. (3.8) and Figure 3.8, and noting
that ¢ = [ because there is no damper, the equation of motion of the system is
d*x 2 _
m—s + ke = f{t) + f{i(1) (3.38)
s s .
where a(1) is measured from the unstretched position of the spring, f(1) is the
externally applied force, and f,(r) is the force exerted by the fluid on the mass
due to the motion of the mass. The force generated by the fluid on the rigid
body s

-

dx dx
_f,{r] = —KM—

& (3.39
dt T ey :

where M is the mass of the fluid displaced by the body, K, is an added mass
coefficient that is a function of the shape of the rigid body and the shape and
size of the container holding the fluid, and C; is a positive fluid damping co-
efficient that is a function of the shape of the rigid body, the kinematic vis-
cosity of the fluid, and the frequency of oscillation of the rigid body.

K. G MeConnell and D. Young, “Added mass of a sphere in a bounded viscous Muid.”

. Engrg. Mech. Div, Proc. ASCE, Vol. 91, No. 4, pp. 147164 {1965).
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3.6 logrange's Equations 95

Linear Single Degree-of-Freedom Systems

For hinear single degree-of-frecdom systems, the expressions for the system
kKinetic energy, the sysiem potential energy, and the system dissipation func-
tion given by Egs. (3.43) reduce to

2‘ Zmn{f {fJf nIH'?]

| n

. ”
V‘ - Zj 2.' k}:.ff,lff.ll ) kl]"-?r
gk A
2 2 Cintfilln = f i (3.46a)

Comparing the forms of the kinetic energy T, the potential energy V. and the
dissipation function £} with the standard forms given in Chapter 2, we

find that
T g ] .3
5 M.
I 5
V= 5 Kot
F :
D= 5 C.q1 (3.406b)

where m, is the equivalent mass, k, is the equivalent stiffness, and ¢, is the
equivalent viscous damping; they are given hy

mc, = HI-”
K. = Ky
e = (4 i fa.'q*f!lli.'}

On substituting Eqs. (3.40) into Eq. (3.44), the result is

f!(f."(lmfl)) El(lm }
di\ ag, \ 2 0 g q';
d [ 3 S i | .
+ kagr | =0
r‘-‘ffn( ’#) dq;(l ’f') b

o

df (meq;) — 0 + ey + kg = O

m.:f:rfl T L'.--'ffl T ;L'r'?l = (3.47)

Thus, to obtain the governing equation of motion of a linear vibrating
system with viscous damping, one first obtains expressions for the system ki-
netic energy, system potential energy, and system dissipation function. If
these quantities can be grouped so that an equivalent mass, equivalent stiff-
ness, and equivalent damping can be identified, then, after the determination
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96 CHAPTER 3  Single Degree-offresdom Systems

of the generalized force, the governing equation is given by the last of
Eqgs. (3.47). We see further from the definitions Eqgs. (3.14) and (3.18) that
— Illr ke'
Wy = "-\II m::r
Ce

Ce
7
2maw, 2N/ k.m,

It is noted that depending on the choice of the generalized coordinate, the
determined equivalent inertia, eguivalent stiffness, and equivalent damping
properties of a system will be different. In the rest of this section, the use of
the Lagrange equations is illustrated with eleven examples. As illustrated in
these examples, we use the last of Egs. (3.47) to obtain the governing equa-
tions of motion if the system Kinetic energy, system potential energy, and dis-

(3.45)

sipation function are in the form of Egs. (3.46b); otherwise, we use Eq. (3.44)
directly to obtain the governing equation of motion.

It is noted that only the system displacements and velocities are needed
from the kinematics to use Lagrange’s method whereas, to use the force-balance
and moment-balance methods, one also needs system accelerations and has to
deal with internal forces. In addition, with the increasing use of symbolic ma-
nipulation programs, it has become more common to have these programs de-
rive the governing equations directly from the Lagrange’s equations.

For the linear system of Figure 3.1, the equation of motion is derived by us-
ing Lagrange’s equations. After choosing the generalized coordinate to be x,
we determine the system Kinetic energy. the system potential energy, and the
dissipation function for the system. From these quantities and the determined
ceneralized force, the governing equation of motion of the system is estab-
lished for motions about the static equilibrium position.

First, we identify the following

g =x, F,=f1)j, r,=xj, and M, =10 (@)

where j is the unit vector along the vertical direction. Making use of Egs.
(3.45) and {a), we determine the seneralized foree as

0, = Erl,f"r‘

FFrom Eqgs. (2.3) and {2.10), we find that the system kinetic energy and poten-
tial energy are, respectively,

l'.:‘i",l

: dxj ’
+0=fl1)i— = fl1 (b
= flr)j = fin) )

T = l-mx
2
= ] At 3
¥ = 5 kx (c)

N e AT I
T
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3.6 lagrange’s Equations 97

and, from Eqs. (3.46), the dissipation function is

L
DF=—i} ()

Comparing Egs. (¢) and (d) to Egs. (3.46), we recognize that
m, = m, k. = kK, and C, =¢C (e)

Hence, from Eqgs. (¢) and the last of Egs. (3.47), the governing equation of
motion has the form
d 1.1._' dx

+c— + kx=f(1) (f)

m—
et~ &t

which is identical to Eq. (3.8).

In the following examples, we show how the Lagrange equations can be
used to derive the governing equations for a wide range of single degree-of-
freedom systems.

In Figure 3.9 a system that translates and rotates is illustrated. After choos-
ing a generalized coordinate, we construct the system Kinetic energy, the sys-
tem potential energy, and the dissipation function, and then noting that they
are in the form of Egs. (3.460), we determine the equivalent inertia, equivalent
stiffness, and equivalent damping coefficient. Based on these equivalent sys-
tem properties and the last of Eqs. (3.47), we obtain the governing equation
of motion of this system. We also determine the expressions for the natural
frequency and the damping factor.

As shown in Figure 3.9, the disc has a mass s and a mass moment of in-
ertia J about its center . The disc rolls without slipping. The horizontal
location of the fixed point (J is chosen to coincide with the unstretched length
of the spring, and the horizontal translations of the center of mass of the disc
FIGURE 3.9 are measured from this point 0. When the center of the disc translates an
Disc rolling and translating, amount x along the horizontal direction 1, then x = ri, where # is the corre-

sponding rotation of the disc about an axis parallel to k. We can choose either
x or # as the generalized coordinate and express the one that is not chosen in
terms of the other. Here, we choose # as the generalized coordinate. Further-
more, we recognize that

q =6, F,=0, M,=Mk, and o, =6k (a)
Then making use of Egs. (3.45) and (a), we determine the generalized force
to bhe

= E:'r:fr-{-_ji:h =MI:F:IF:*‘EJ?E: = M(1) (b)

! dlef ot
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3.6 lagrange’s Equations 99

For the inverted pendulum shown in Figure 3.10, we obtain the soverning
equation of motion for “small™ oscillations about the upright position. The nat-
ural frequency of the inverted pendulum is also determined and the natural fre-
quency of a related pendulum system is examined. In the system of Figure
3.10, the bar, which carries the sphere of mass m,, has a mass m- that is uni-
formly distributed along its length. A linear spring of stiffness & and a linear
viscous damper with a damping coefficient ¢ are attached to the sphere.

Before constructing the system Kinetic energy, we determine the mass
moments of inertia of the sphere of mass m,; and the bar of mass m, about the
point ). The total rotary inertia of the system is given by

Jo = Jon + Jg (a)

where Jg; 15 the mass moment of inertia of m,; about point (F and J, is the
mass moment of inertia of the bar about point . Making use of Table 2.2

FIGURE 3.10 and the parallel-axes theorem, we find that
Invarted planar pendulum restrained 2
by a spring and a viscous damper, Jop = 5 nyrt + mgL3
l 1 IJE 2 ] 4
Jos = maLs + m (—) = — m,l3 h
o 12 2 1 e 2 (b)

After choosing g, = # as the generalized coordinate, and making use of
Egs. (a) and (b)), we lind that the system Kinetic energy lakes the Torm

| . oss ] 18°
T'=3dob* =3 o + Joa)6"

12, T
= 2 ’% myr- + J*.'r:p':.|E + ,1_' .H‘I:LE]H" (c)

EE

For “small” rotations about the upright position, we can express the
translation of mass m as

x; =~ L8 (d)

Then, making use of Egs. (2.10), (2.39), (2.45), and (d), the system potential
energy is constructed as

1o, 1 o1 L.

V = i.‘;rf - Em]gi,ﬁ!" - -im:g Eﬂ
I 2 Ls

= |:ka == m|gL| — M2 —= HE {E,}
2 2
The dissipation function takes the form

N

D= % exXy = 5 cl8” (f)

= e oL il i o i = e SN T, -
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100 CHAPTER 3 Single Degres-olrreedom Syslems

Comparing Egs. (c), (e}, and (I} to Egs. (3.46), we find that the eguivalent in-
ertia, the equivalent stiffness, and the equivalent damping properties of the
system arce given by, respectively,

2 3 1 ,
m, = - myrt + ml] + - mol3
3 z Sk

4 Lo
= kL — mpel, — m.g ?'

£
¢, = ¢Lj (&)

Noting that the only external force acting on the system is gravity load-
ing, and that this has already been taken into account, the governing equation
of motion is obtained from the last of Eqs. (3.47) as

mb+ch+ko=0 (h)

Then, from the first of Egs. (3.48) and (g), we find that

| . Ij
[k, [ AL = migLy = mog

W, = 4| =4 (1)
\ m, \-' Jor + Jon

It is pointed out that &, can be negative, which affects the stability of the

system as discussed in Section 4.3, The equivalent stiffness K, is positive when

- ";"2 ;

ki = mgl, + m.g 5 (1)

that 1s, when the net moment created by the gravity loading is less than the
restoring moment of the spring.

Matural Frequency of Pendulum System

In this case, we locate the pivotl point ¢ in Figure 3.10 on the top, so that the
sphere is now at the bottom. The spring combination is still attached to the
sphere. Then this pendulum system resembles the combination of the systems
shown in Figures 2.17a and 2.17b. The equivalent stiffness of this system
takes the form

k, = kL2 + mel, + mag — (k)

Nuling that the u_'quivulunt inertia of the systeimn is the same as in the inverted-
punciulum case., we find the natural Frcquum_'}f of this system 15

]
I|I - I.-I'I
"k (kLY + mgly + mag 5

O [l SIS
Uy = 4/ =4 (I
o ‘\' e \-' Jon + oz :

Ifm, <<<m, r<<< L.,and £ = 0, then from Eqs. (b) and (1), we arrive at
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3.6 Lagrange’s Equations 101

|' ; (] N m:f_.:>
o Mata
/_ a5 v omyly g fm)

Y YT e
| =1 2
S

which is the natural frequency of a pendulum composed of a rigid, weightless
rod carrving a mass a distance L, from its pivot. We see that the natural fre-
quency is independent of the mass and inversely proportional to the length L.

For the half-disk shown in Figure 3.11, we will choose the coordinate ¢ as the
generalized coordinate and establish the governing equation for the disc.
Through this example, we illustrate how the system Kinetic energy and the sys-
tem potential energy can be approximated for “small” amplitude angular oscil-
lations, so that the final form of the governing equation is linear. During the
course of oblaining the governing equation, we determine the equivalent mass
and equivalent stiffness of this system. The natural frequency of the disc is
determined and it is shown that disc can be treated as a pendulum with a certain
effective length. After determining the equivalent system properties, we deter-
mine the governing equation of motion based on the last of Egs. (3.47).

As shown in Figure 3.1 1, the half-disk has a mass m and a mass moment
of inertia J; about the center of mass (. The system is assumed (o oscillate
without slipping. The point () is a fixed point, and the point of contact C is a
distance R from the fixed point for an angular motion @, The orthogonal unit
vectors 1, f, and k are fixed in an inertial reference frame. The position vector
from the fixed point € to the center of mass G is given by

r=(—RO + bsind)i + (R — bcos)j {a1)
and the absolute velocity of the center of mass is determined from Eq. (a) to be
i = —(R — bcos#)8i + b sin B8] (b)

Then, using Eq. (1.24) and selecting the generalized coordinate g, = #, the
system Kinetic energy takes the form
L= . T
I=—J48" + E-ml:r-r:l

2

i 2 I + 4 tq
= = Jgb* + ; m[(R — bcos8)” + b7 sin” 06"

Eo: s 4 2 :
= iJ.:,-H'* | im[ﬁ'“ + b* — 2bR cos 818° (c)

FIGURE 3.11 Choosing the fixed ground as the datum, the system potential energy takes the
Half-disk rocking on a surface. foarm

[* T e ol s P - =, Tl WL gty i k!
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3.6 Lagrange’s Equations 103

Since the gravity loading has already been taken into account, the gener-
alized force is zero. Furthermore, since there is no damping, the equivalent
damping coefficient ¢, is zero. Hence, from Egs. (3.47) and (1), we arrive at
the governing equation

[Jg + miR E:'}E]g- + mgh = 0 (]}

Natural Frequency

From Eq. ( j), we find that the natural frequency is

.
“ NI + m(R - b)?
c .
s s g — -
N [Jg + m(R — B)]jmb W

On comparing the form of Eg. (k) to the form of the equation for the natural
frequency of a planar pendulum of length L, given by Eqg. (m) of Exam-
ple 3.11, we note that Eqg. (k) is similar in form to the natural frequency of a
pendulum with an effective length

j:‘" HEIER_.II.:':
Li. — i3 sl } (1

mhb

N | [ ., | | . | -
LRLR) A LIl AT W L
2 R : Ll JILL | ]

pretensi

oned or precompressed sprin

We revisit Example 2.8, and use Lagrange’s equations to derive the govern-
ing equation of motion for vertical translations x of the mass about the static-
equilibrivm position of the system. Through this process, we will examine
how the horizontal spring with linear stiffness &, affects the vibrations. The
natural frequency of this system is also determined. The equation of motion
will be derived for “small” amplitude vertical oscillations; that is, /L] <<= |,

In the initial position, the horizontal spring is pretensioned with a tension
T, as shown in Figure 3.12, which is produced by an initial extension of the
spring by an amount & ; that is,

TI = k]ﬁr_, ‘Iu.}

The Kinetic energy of the system 1s

I
== mi” (b

Next, we note that the potential energy is given by

F_IEUHE 3.12 V="V, + ¥ ic)
single degres-of-freedom system

with the horizontal spring under an where V., i = 1, 2, is the potential energy associated with the spring of stiff-
initial tension T, ness k. Mote that gravitational leading is not taken into account because we

LOras oroegiaas oor airelios ae authl
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104 CHAPTER 3 Single Degres-olrreedom Syslems

are considering oscillations about the static-equilibrium position. On substi-
tuting for ¥V, and V., in Eq. (c), we arrive at

l W
Vix) = S ki (8, + ALY + S kot® (d)

where AL is the change in the length of the spring with stiffness &, due to the
motion x of the mass. For |x/L| << 1, as discussed in Example 2.8, this

changu1s

AL=VI2+ - L=LV1+ (3L} - L

L/ x\? Lofx\2
—_— 4 —I— — — =1
.[(I E(Lj) Il 2<L) (e)

From Egs. (d) and (e), the system potential energy is

1 L [ 2\ 1 4
Vix) = 5 & (3" T (1) ) t ol ()

The expression for potential energy contains terms up to the fourth
power of the displacement x, whereas the standard form given in Egs. (3.46)
contains only a quadratic term. However, the kinetic energy is of the form
given in Egs. (3.40). Hence, we will need to use Eq. (3.44) directly to obtain
the governing equation. To this end, we recognize that g; = x and find that

1% L{xN\{x
i s LW 5 L -

"hﬁr- _ ":"I x

= .Is'.': + L X + 2 _ll"_:

“(8+3)
ol 2 _L A [4:-}

where we have made use of Eq. (a) and we have dropped the cubic term in x
since we have assumed that /Ll <= 1.

Noting that the dissipation function 3 = 0 and that the generalized force
{J, = (I, we substitute Eqs. (b) and {g) into Eq. (3.44) to obtain the following
governing equation of motion

7
me + (ﬁ:g+ !I)x=ﬂ i(h)

From Eqg. (h), we recognize the natural frequency to be

[k, + T,/L
— |
SO i

[t is seen that the effect of a spring under tension, which is initially normal to

(1]

the direction of motion, is Lo increase the natural frequency of the system.
If the spring of constant k.l 1s compressed instead of being in tension, then
we can replace T, by —T| and Eq. (i) becomes

Copyright 2009 Cengage Learning, Inc, All Rights Reserved. May not be copied, scanned, or duplicated, in wh:.jle OF In part,
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3.6 Lagrange’s Equations 105

kﬁ s ?I ||'IIL
B ‘J ky — T\/L ()

m

From Eq. (), it is seen that the natural frequency can be made very low by ad-
justing the compression of the spring with stiftness k. At the same time, the
spring with stiffness &, can be made stiff enough so that the static displace-
ment of the system s not excessive. This type ol system 1s the basis ol at least
one commercial product. s

We shall determine the governing equation of motion and the natural fre-
quency for the system shown in Figure 3.13, for “small” angular motions of
the pendulum. The system shown in Figure 3.13 is similar to the system

4 shown in Figure 3.9, except that there is an additional pendulum of length L
jt and rigid mass m that is attached to the disk. The disk rolls without slipping.
;;/ 0 — X The pi‘.ﬂii[?i‘m of fixed p{‘.rinl{}it-:.{:hm:un to coincide \."-"-Il!'l the un.*-;ln_:lchc:d Eunglh
7 i of the spring, the coordinate # is chosen as the generalized coordinate, and the
translation x = —R#.
Iq g ol

The kinetic energy of the system is given by

/—\ = T-;Iisk + Tp-.:ndulum {ﬂ}
i

Q‘mi‘y/ where the kinetic energy of the disk is given by Eq. (e) of Example 3.10. The

kinetic energy of the pendulum mass m is given by

i 1
\@ ";J:'L'I'ldl.lll.lm o 2 i (Fm " Fm} (b}

where, based on the particle Kinematics discussed in Section 1.2 and the first

FIGURE 3.13 of Egs. (f) of Example 1.1, we have
Disk that is rolling and translating and dr,, i
has a rigidly attached extended mass. V= it = o [(x + Lsin®)i + (L — Lcos#)j]
V, = {—R!’-IJ + Lo cos 8)i + L8 sin ] (c)

On substituting for the velocity vector from Eq. (¢) into Eq. (b} and execcuting
the scalar dot product, we obtain

Tpﬂndu]um = Lm [':_Rﬁ. + U}EGS ﬂjz + Lzézsillzﬂz

2
| r e’ 2a2 T
=m [R°9° + L°6° — 2LRB%cos ]
1 - a Tt
= m[(R® + L* — 2LR cos 0) 10" (d}

"Minus K Technology, 420 5. Hindry Ave., Unit E, Inglewood, CA. %0301 {www.minusk.com).
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106 CHAPTER 3 Single Degres-olrreedom Syslems

Since the objective is to obtain the governing eguation for “small” angular os-
cillations of the pendulum about the position # = 0, we retain up o quadratic
terms in Eq. (d). To this end, we expand the cos @ term as

[ g
cosB=1— 0"+ «-: (e)
2
substitute Eq. (e) into Eq. (d), and retain up to quadratic terms to obtain

I 3 4 Tq I At
Trll.:lll.lllllh'rl =, - m [L_ Al ELR]H_ = 3 n'm.r_I[.- £ R]_H_ it

F

Making use of Eq. () of Example (3, 10) and Eq. (f), we construct the system
kinetic energy from Eq. {(a) as

| su TR e
T = , milL — R)6° + S Mpx” + EJUH-

| “in
= > [m(L — R)* + mpR* + J;]0° (2]
The pulunti:jl energy of the syslen is constructed as

I 2 1 o ;
Vs mell — Lcos@) = zkﬁ“ﬁ'- Fomel(l — cos8) (h)

where the datum for the potential energy of the pendulum is located at the bot-
tom position and we have used Eq. (2.36) with L/2 replaced by L. To describe
small oscillations of the pendulum, we use the expansion for the cos # term
given by Eq. (e) and retain up to quadratic terims in Eq. (h) to obtain

Lo | :
V=—kR% + —mpelp®
2 ¥

i

1 - 5
= _ (KR" + mgL)0" (i)

In this case, the dissipation function is given by
] - I o ity | =
D= —¢k*=_cR® (j)
2 )

Comparing Egs. (g). (1), and () to Eqgs. {3.46), we find that the cquivalent
syslem properties are given by

m, = m(L — R + mpR* + Jg

k, = kR* + mgL

c, = cR* (k)
Thus, making use of the last of Egs. (3.47) and Eqgs. (k) and noting that the
generalized force (2, = (0, we arrive at the governing equation

me.lrf.i + E',.E-' + k& =10 {1}
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3.6 Lagrange’s Equations 107

From Eqgs. (k) and the first of Eqgs. (3.48), we determine that the svstem natu-
ral frequency 1s

Tk kR® + mgl

— || ¥ —
by ‘x'l M, ‘\III r.'rr{f, — R}E + IFJ;}RE i J.,f; {m)

(MEMS) device

We shall determine the governing equation of motion and the natural frequency
for the microelectromechanical system™ shown in Figure 3.14. The mass m, is
the scanning micro mirror whose typical dimensions arve 300 pm > 400 wm.
This mass is modeled as a rigid bar. The torsion springs are rods that are 50 pm
in length and 4 pm? in area and are collectively modeled by an equivalent tor-
sion spring of stiffness & in the figure. Mass m; is the mass of the electrostatic
comb drive, which is comprised of 100 interlaced “fingers.” The comb fingers
are 2 pm wide and 40 pm long. The comb drive is connecled to the displace-
ment drive through an elastic member that has a spring constant k. The mass m
is connected to the bar m, by a rigid, weightless rod.

__Frame and e Az
Mg/ Back-support —p e
\ _-Torsion Bars *
g, L
-
= ogl) |
. r Ly
- th il
1“?#: 1] BE17 R
Pﬁfvj my —
—=
— = T .1.'|
MEMs device X0
(i) b

FIGURE 3.14

[a) MEMS device and {b) single degree-of-freedom model. Source: From M.H.Kiang,

(0. Solgaard, K.Y Law, and B.5 Muller, "Electrostatic Comb-Drive-Actuated Micromirrors for
Laser-Beam Scanning and Positioning®, Journal of Microelectromechanical Systam, Vol. 7,
No.1, pp. 27-37 (March 1998). Copyright © 1388 |IEEE. Reprinted with permission.

M.-HL Kiang, O, Solgaard, K. Y. Lau, and R. 5, Muller, “Electrastatic Comb-Dirive- Actuated
Micromirrars for Laser-Beam Scanning and Positioning,” J. Microelecimmechanical Svilems,
Vol. 7. No. 1, pp. 27-37 (March 19498},

e . 4 i il i - A TR ] - T
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108 CHAPTER 3 Single Degres-olhieedom Syslams

We will use the angular coordinate ¢ as the generalized coordinate, and
derive the equation of motion for “small™ angular oscillations. The translation
1,01 1s prescribed, and the translations x; and x, are approximated as

v, = Lah
x: = Lioh ia)

The system potential energy is constructed as
1-"r o .FI + FE + 1_.-"3 |:h:|

where V| is the potential energy of the torsion spring, V, is the potential en-
ergy of the translation spring, and V; is the gravitational potential energy of
the bar. For “small” angular oscillations of the bar, Eq. (¢) of Example 2.9 is
used to describe the bar’s potential energy. Thus, we arrive at

| . R |
V= 5 k™ + kax,(t) — x ) + Z magl L, — ,,:Ilt,’;u‘

|
2
oL 1 5
=5 kb~ + 5 klx(t) — Lad)™ + A mag(Lly — Ly)d (c)

where we have made use of Egs. (a). When L, = L,, the effects of the increase
and decrease in the potential energy of each portion of the bar of mass m,
cancel.

Next, the system’s Kinetic energy is determined as

: 1 25 L s 1 2
T = _El-'rrlq:"- * 3 |Iliil'."'-l_ - 2 Jud’j g 9 ‘IHIL':E":]["-

= U+ miEd @

The system dissipation function is given by
D= cil= LLEI&’J' (e)
where we have again made use of Egs. (a). Comparing the forms of Eqgs. (c),
(d), and (e) to Eqgs. (3.40), we find thal the potential energy is not in the stan-

dard form. Thus, we will make use of Eq. (3.44) to determine the governing
equation of motion. To this end, we find from Eq. (¢} that

= D Tk LK) — L)+ magll — L)
deb e 2 4

= ki — KLa(x(1) = La) +  mag (L> — L,)8

= "ke F kLS 4 L myg (Lo — L) | — kLox (1) (F)
To obtain the governing equation of motion, we recognize that g, = b,

substitute for the syslem kKinetic energy and the di!-;!-:ipulinn function from
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3.6 Lagrange’s Equations 111

where

abcos o — b*\?
”I[:‘F} = v'rurb + -'ir.lm- + |:"rr:ll.l' + mﬂrz:]( FE{Z] )

ab 3
+ m, ( ------ sin :p) (h)
¢)

System Potential Energy
The system potential energy is given by

. i , , _
V=g kr(e) + 5 Ka [dit) — eg]” (i)

Equation of Motion

Since the expressions for kinetic energy and potential energy are not in the
standard form of Egs. (3.460), we will make vse of the Lagrange equation
given by Eq. (3.44) to obtain the equation of motion; that is,

.:f(m") aT oD  av
L y e

e — — U 1
et \ dep dp i de W

where we have used the fact that the generalized force is zero. Noting that
there is no dissipation in the system—that is, 2 = 0—we substitute for the
kinetic energy and potential energy from Eqs. (g) and (i), respectively, into
Eq. (]}, and carry out the differentiation operations to obtain the following
nonlinear equation

v o v g . 5
mig)iE + 5 m ()" + krle)r' (@) + ke = kyed(r) (k)

where the prime denotes the derivative with respect to .

Consider the model of a crankshaft shown in Figure 3.16 where gravity is act-
ing in the k direction. The crank of mass mg; and mass moment of inertia J;
about its center of mass is connected to a slider of mass m, at ene end and to
a disk of mass moment of inertia J, about the fixed point €J. Choosing the an-
gle # as the generalized coordinate, we will first derive the governing equation

"G, Genta, Vibration of Structures and Machines: Practical Aspects, 2nd ed., Springer-Verlag,
NY, pp. 338341 (1993); and L. Brusa, C. Delprete, and G, Genta, “Torsional Vibration of Crank-
shafts: Effects of Non-Constant Moments of Inertia” J. Sound Vibration, Vol 205, No. 2,
ppe 1351350 (1997).
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112 CHAPTER 3 Single Degres-olrreedom Syslems

FIGURE 3.16

Crankshaft model.

of motion of the system, and then from this equation, determine the equation
aoverning oscillations about a steady rotation rate.

Kinematics
From Figure 3,16, we see that the position vector of the slider mass m,, with
respect to point () is

r, = Ireosf + lcosy)i + dj (a)

and that the pu&-;ili:m vector of the center of mass G of the crank with respect
Loy point () is

rg = (recos® + acosy)i + (rsinf — asiny)j (b)

Furthermore, from geometry, the angle y and the angle & are related by the
refation

rsinft = d + Isiny i)

To determine the shder velocity, we differentiate the position vector Ty

with respect to time and oblain
¥, = (—rf sin @ — Iy sin yall fd)
By differentiating Eq. (c) with respect to time, we obtain the following rela-
tionship between ¥ and #:
reosf .

T=!'<::-::|5*f‘ar (e)

After substituting Eq. (e} into Eq. (d), we obtain the slider velocity to be

Pp = r@(sin @ + tan y cos )i if)
The velocity of the center of mass G of the crank is obtained in a similar

manner. We differentiate Eq. (b) with respect to time to obtain

v; = (—rBsinf — aysiny)i + (rf cos @ — ay cos y)j (g)

¥a)
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3.6 Llogronge’s Equations 113

After substituting Eq. (e} into Eq. (g) and noting that ¢ + & = [, we obtain the
velocity of the crank’s center of mass o be

i : i} .
Vi = —(sinﬂ' + ; Lan ']-"Ui’]-:h?”).l"l':}f + (! COs ﬁ)rﬂj (h)

System Kinetic Energy
The wotal Kinetic energy of the system is given by
1 ., 1 | S | 2 .
b= =l , mg(vgvg) + > Jgyt " m(vpw,) (1)

-
= e

We now substitute Egs. (e), (f), and (h) into Eq. (i) to obtain

] Loy
I'= —Jig)e '
5 JhE, L
where
, . a 2 b *
Jg)=J;,+ r—m,:;{ (:ﬂn e + ] tan -y cos H) + ( : Cis Hj }
g Jol EE028 2+ ‘m,(sin 6 + 1 i) (k
: - = £ o S =
g | cos ¥ FoRL | SN an y cos )

and from kqg. (c)
1 ﬂ’} .
= sin sin f — 1}
y = sin T ¢ a

Equation of Motion

NMoting that the generalized coordinate ¢, = ¢, the system potential energy is
zero, the system dissipation function is zero, and that the generalized moment
(), = —Min, Eqg. (3.44) takes the form

d { af af
dr(ag}) R it (m)

Upon substituting Eq. {j) into Eq. (m) and performing the differentiation op-
erations, we obtain

o 1 o ;
S8 + S J'0)6° = —M(1) (n}

where the prime denotes the derivative with respect to £
The angle # can be expressed as the superposition of a rigid-body motion
at a constant angular velocity @ and an oscillatory rotation ¢ that is,

olr) = wr + é1) (0}

Then, from Eqgs. (n) and (o), we arrive at

v [ v
JO)p + 2 L(0)(w + ¢)° = —M(1) (p}
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114 CHAPTER 3 Single Degree-olieedom Systems

A centrifugal governor is a device that automatically controls the speed of an
engine and prevents engines from exceeding certain speeds or prevents dam-
age from sudden changes in torque loading. We shall derive the equation of
mation of such a governor by using Lagrange’s equation. A model of this de-
vice is shown in Figure 3.17.

The velocity vector relative to point ¢ of the left hand mass is given by

V,, = —Locos @i + Lsingf + (r + L sin @)wk (a)

From Eq. (1.22) and Eqg. {a), the kinetic energy is

. |
Tl:‘F'1 "'15'} =2 5 m{v.lu' Fur]

= m|(—L¢cose)® + (Lesing)® + ((r + Lsing)w)? (b

= mw(r + Lsing)® + m¢°L*

(- Lsing b @00
[L to page]

!

Controfled arm

i

FIGURE 3.17

Centrifugal governor.

"1, P. Den Hartog, Mechanical Vibrations, Dover, p. 309, 1985; and Z.-M. Ge and C.-1 Leg,
“Nonlinear Dynamics and Control of Chaos for a Rotational Machine with a Hexagonal
Centrifugal Governor with a Spring,” J, Sound Vilkration, 262, pp. B45-864, 2003,

™ P e e A e e s A | E
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3.6 Lagrange’s Equations 115

The potential energy with respect o the static equilibrium position is
l 5
Vig) = 5 k(2L{1 — cosg))” — 2mgL cosg (c)

where the factor of 2 inside the parenthesis is because cach pair of linkages
compresses the spring from both the top and the bottom.

Upon using Eq. (3.44) with g, = @, noting that (; = ) = {), and
performing the required operations, we obtain the following governing
equation

mL*§ — mrLw’® cosg — (mew” + 2k)L? sing cos g

+ Limg + 2kL)sing = 0 (d)
Introducing the quantities
r - s 2R
Y= I W, = [ and w, = ” (el
Eq. (d) is rewritten as
B — yar© cose — {mz =k mﬁ}:-;in{p cosE + IZt.u;'; -+ ﬂ!ﬁ}.‘ﬁl‘ltp = {) (I
If we assume that the oscillations ¢ about ¢ = 0 are small, then

cos@ = |, sing = ¢, and Eq. (f) simplifies to

- o')e = yo’ (2)

=l

Sy
R

From the stiffness coefficient in the equation of motion, we sce that for
fil = w,, the stiffness coelficient is negative.

A eylindrical wheel is placed on a platform that is rotating about its axis with
an angular speed (). The center of the wheel is attached to the platform by a
spring with constant &, as shown in Figure 3.18. We shall determine the
change in the equilibrium position of the wheel and the natural frequency of
the system about this equilibrium position. When {} = 0, the center of the
wheel is at a distance R from the axis of rotation, which is the length of the
unstretched spring.

It we denote the change in the equilibrium of the spring due to the rota-
tion {1 as &, then at equilibrium, the spring force is equal to the centrifugal
force, which can be represented as

kd = ml:ﬁ' + E}ﬂz

Obras protegidas por direitos de autol
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inertia of the bar about the point O is Jy, and the tor-
sion stiffness of the spring attached to the pivot point
15 ;. Assume that there is gravity loading.

3.8 Determine the equation governing the system stud-
ied in Example 3.15 by carrying out a force balance.

Section 3.3.1

3.9 A cylindrical buoy with a radius of 1.5 m and a
mass of 1000 kg Aoats in salt water (p = 1026 kg/m”).
Determine the natural frequency of this system.

310 A 10 kg instrument is to be mounted at the end of
a cantilever arm of annular eross section. The arm has
a Young's modulus of elasticity £ = 72 % 10" N/m”
and a mass density p = 2800 I-:;_:_,."m'a. If this arm is
SO0 mm long, determine the cross-section dimensions
of the anm so that the first natural frequency of the
system is above 530 Hz,

3.11 The static displacement of a system with a motor
weight of 385.6 kg is found to be 0.0254 mm. Deter-
mine the natural frequency of vertical vibrations of
this system.

312 Arotorisattached to one end of ashaft that is fixed
at the other end. Let the rotary inertia of the rotor be J,
and assume that the rotary inertia ol the shaft 1s negli-
gible compared to that of the rotor. The shall has a di-
amelerd, a length L., and it iz made from material with
a shear modulus G. Determine an expression for the
natural frequency of torsional oscillations.

313 Obtain an expression for the natural frequency
for the system shown in Figure E3.5.

3.14 Consider the hand motion discussed in Example
3.3 and let the hand move in the horizontal plane; that
is, the gravity force acts normal to this plane. Assume
that the length of the forearm [ is 25 cm, the mass
of the Tore arm m 15 1.5 kg, the object being carried
in the hand has a mass M = 5 kg, the constant &, as-
sociated with the restoring force of the biceps is 2 X
107 Nfrad, the constant K, associated with the triceps
is 2 % 10° Nirad, and the spacing a = 4 cm. Deler-

Copyright 2009 Cengage Learning, Inc, All Rights Reserved. May not be copied, F:L‘HI‘II'I-E-&']:- r:n-r -du-p[
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mine the equation of motion of this system, and from
this governing equation, find the natural frequency
and damping factor of the system.

3.15 A spring elongates 2.5 mm when stretched by a
force of 5 N. Determine the static deflection and the
period of vibration if a mass of’ 8 kg is attached to the
spring.

316 Determine the natural frequency of the steel disk
with torsion spring shown in Figure E3.16 when
k, = 0.488 N+1'r'||-'rr:_=|~:l, d = 50mm, pyg = 'I"E.Sﬂlkgﬁn;,
and A = 2 mm.

h

et —

FIGURE E3.16

3.17 Consider a nonlinear spring that is governed by
the torce-displacement relationship

where ¢ = 3000 N, & = 0.015 m, and ¢ = 2.80. If this
spring is to be used as a mounting for different
machinery systems, obtain a graph similar to that
shown in Figure 3.5b and discuss how the natural
frequency of this system changes with the weight of
the machinery.

3.18 The static defiection in the tibia bone of a 120 kg
person standing upright is found w be 25 pm.
Determine the associated natural frequency of axial
vibrations.

319 A solid wooden cylinder of radius r, height A, and
specific gravity 5, is placed in a container of tap wa-
ter such that the axis of the cylinder is perpendicular
to the surface of the water. Assume that the density of

2 =T S ivelt= el al=1= - i - I
HEU = | ._.| el i =S

icated, in whole or in part.

el LA LY



the water 18 py.o- 1t 15 assumed the wooden cylinder
stays upright under small oscillations.

a) If the cylinder is displaced a small amount, then
determine an expression for its natural frequency.

b) If the tap water is replaced by salt water with spe-
cific gravity of 1.2, then determine whether the
natural frequency of the wooden cylinder in-
creases or decreases and by what percentage,

3.20 Consider the pulley system shown in Figure
£3.20. The mass of each pulley is small compared
with the mass m and, therefore, can be ignored. Fur-
thermore, the cord holding the mass is inextensible
and has negligible mass. Obtain an expression for the
natural frequency of the system.

FIGURE E3.20

3.21 A rectangular block of mass m rests on a station-
ary half-cylinder, as shown in Figure E3.21. Find the
natural frequency of the block when it undergoes
small oscillations about the point of contact with the
cylinder,

FIGURE E3.21
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Exercises

section 3.3.2

3.22 Formulate a design guideline for Example 3.8
that would enable a vibratory system designer to de-
crease the static deflection by a factor n while holding
the damping ratio and damping coeflicient constant.

323 Formulate a design guideline for Example 3.8
that would enable a vibratory system designer o de-
crease the static dellection by a factor i while Keeping
the damping ratio and mass m constant.

3.24 An instrument's needle indicator has a rotary in-
ertia of 1.4 x 10" kg-m®. It is attached to a torsion
spring whose stiffness is 1.1 % 1077 N.m/rad and a
viscous damper of coefficient €. What is the value of ¢
needed so that the needle s eritically damped?

3.25 Determine the natural Irequency and damping
factor for the system shown in Figure E2.26.

3.26 Determine the natural frequency and damping
factor for the system shown in Figure E2.27,

section 3.6

3.21 For the base-excitation prototvpe shown in Fig-
ure 3.6, assume that the base displacement wif) is
known, choose x(f) as the generalized coordinate, and
derive the equation of motion by using Lagrange's
cauation.

3.28 Obtain the ﬁ:quutiun of motion for the syslen
with rmuting unbalance shown in Figur:: 3.7 h:,.f uf-'.ing

Lagrange’s equations,

3.29 Obtain the equation of motion for the system
shown in Figure 3.10 by using moment balance and
compare it to the results obtained by using Lagrange's
equation.

330 Derive the governing eguation for the single-
degree-of-freedom system shown in Figure E3.30 in
terims of # when & 15 simall, and obtain an expression
for its natural Irequency. The top mass of the pendu-
lum is a sphere, and the mass m, of the horizontal rod
and the mass m,, of the rod that is supporting m,, are
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Cantilever
hmm ﬂ

FIGURE E3.30

= knuckle slides
on pendulum

and pivots with
respoct to wm,

-—

cach unitormly distributed. The cylinder rolls without

slipping. The rotational inertia J. of the cylinder is
about the point (F and J,
of the rod about the point 5. Assume that these rota-

is the total rotational inertia
tional inertias are known.

331 For the fluid-Aoat system shown in Figure E3.31,
J, is the mass moment of inertia about point O, Assume
that the mass of the bar is m,. Answer the following.

a) For “small” angular oscillations, derive the govern-
ing equation of motion for the Auid float system.

b) What is the value of the damping coefficient ¢ for
which the system is critically damped?

~ L 3
icj'l. : : J Rigid. weightless
: 7 connection
gt o B
—Lt ’

—""l d |-l-—

FIGURE E3.31

3.32 Determine the nonlinear governing equation of

motion for the Kinematically constrained system
shown in Figure E3.32. Consider only vertical mo-

tions of my.

Single Degree-olreedom Syslams

T

Rigid, weightless rod

FIGURE E3.32

FIGURE E3.33

333 Determine the natural frequency of the angle
bracket shown in Figure E3.33. Each the
bracket has a uniformly distributed mass m oand a
length L.

leg of

3.34 Determine the natural frequency for the vertical
oscillations of the system shown in Figure E3.34. Let
L. be the static equilibrium length of the spring and et
/L] <=<= 1. The angle vy is arbitrary.

FIGURE E3.34

Obras protet iE W direfos

ge auto!
Copyright 2009 Cengage Learning, Inc, All Rights Reserved. May not be copied, qmnnm‘] or duph:alcd in Wl‘lt‘.llE OF In part,



3.35 Consider the planar pendulum of mass m and con-
stant length / that is shown in Figure E3.35. This
pendulum s described by the Tollowing nonlinear
equalion

mi*f + mel sin @ = )

where # is the angle measured from the vertical. De-
termine the static-equilibrium positions of this system
and linearize the system for “small” oscillations about
cach of the system static-equilibrium positions.

&

FIGURE E3.35

336 For the translating and rotating dise system of
Figure 3.9, choose the coordinate xy measured from the
unstretched length of the spring o describe the mo-
tion of the system. What are the equivalent inertia,
equivalent stiffness, and eqguivalent damping proper-
ties for this system?

3.371 For the inverted pendulum system of Figure 3. 10,
choose the coordinate x; measured from the un-
stretched length of the spring to describe the motion
of the system. What are the equivalent inertia, equiv-
alent stiffness, and equivalent damping properties for
this system?

338 Consider a pendulum with an oscillating support
as shown in Figure E3.38. The support is oscillating
harmonically at a frequency w; that 1s,

Copyright 2009 Cengage Learning, Inc, All Rights Reserved. May not be copied, scanned, or dupli:a!:m], in whole or in
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Exercises
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FIGURE E3.38

u(t) = U cos wt

At the point about which the pendulum rotates, there
is a viscous damping moment ¢/-f.

a) Determine expressions for the Kinetic energy and
the potential energy ol the system.

h1 Show thal the gnwcrning uquuti[m ol motion can be
wrillen as

d*o di 5 ,
PE + 2L g + [1 = U2 cos Ql7lsin@ =0
where
T = 0, tui='£. i1=w.
! ),
5
- v - [\
2L — and U/, |

) Approximate the governing equation in (b for
“small™ angular oscillations about §, = 0 using a
two-term Tavlor expansion for sin #, and show that
the nonlinear stiffness is of the softening type.

339 Use Lagrange's equation to derive the equation
describing the vibratory system shown in Figure
[£3.39, which consists of two gears, each of radius r
and rotary inertia J. They drive an elastically con-
strained rack of mass m. The elasticity of the con-
straint is & From the equation of motion, determine
an expression tor the natural [requency,

340 Oblain the gm-‘c:rning uquuli:m of maotion in
lerms of the gunuruli:-’.ud coordinate 8 Tor torsional

part.

L=

AUTO
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FIGURE E3.40

oscillations of the wind turbine shown in Figure
E3.40. Assume that the turbine blades spin at e rad/s
and that the total mass unbalance is represented by
mass m, located at a distance & from the axis of rota-
tion. The support for the turbine is a solid circular rod
of diameter d, length L, and it is made from a material
with a shear modulus G. The turbine body and blades
have a rotary inertia J.. Assume that the damping co-
efficient for torsional oscillations is ¢,

3.1 The uniform concentric cylinder of radius R rolls
without slipping on the inclined surface as shown in

CHAPTER 3 Single Degres-olrreedom Syslems

Figure E3.41. The cylinder has another cylinder of ra-
dius r < R concentrically attached to it. The smaller
cylinder has a cable wrapped around it. The other end
of the cable 15 fixed. The cable 15 parallel to the in-
clined sorface. If the stiffness of the cable is &, the
mass and rotary inertia of the two attached cylinders
are m and Jp, respectively, then determine an expres-
sion for the natural frequency of the system in Hz. The
length of the unstretched spring is L.

FIGURE E3.41

3.42 For the pulley shown in Figure E3.42, determine
an expression for natural frequency, for oscillations
about the static equilibrium position. The springs are
stretched by an amount x, at the static equilibrium.
The rotary inertia of the pulley about its center is J,,
the radius of the pulley is r, and the stffness of each
translation spring is k.

FIGURE E3.42

343 The pendulum shown in Figure E3.435 oscillates
about the pivot at (. If the mass of the rigid bar of
length L can be neglected, then determine an expres-
sion for the damped natural frequency of the system
for “small™ angular escillations,
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FIGURE E3.52

FIGURE E3.54
3.53 Obtain the equation of motion for the system

shown in Example 3.12 when the oscillations about

its upright position are no longer “small.” The free length of the spring Lissuchthat L = i + r.
Derive the governing equation of motion. Do nol

354 A cylindrical disk of mass m and radius rrolls on make any assumptions about the magnitude of

a surface without slipping, as shown in Figure E3.54.  oscillations.
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Free oscillations of systems are important considerations that must be taken into account in order to obtain effective operations of

a system. For & helicopter or a ship crane, the load oscillations must be taken into account to carry out safe load-transfer operations,
Stability of vibratory systems such as the machine tool must also be considered in the design of systems subjected to dynamic loads.
[ Source: David Buttington /Getty Images |

126

Obras protegidas por direitos de autor
Copyright 2009 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whaole or in part.



e
Single Degree-of-Freedom System:
Free-Response Characteristics

4.1 INTRODUCTION

42 FREE RESPONSES OF UNDAMPED AND DAMPED SYSTEMS
421  Introduction
422  Initial Velocity
423  Initial Displacement
424 |Initial Displacement and Initial Velocity

4.3 STABILITY OF A SINGLE DEGREE-DF-FREEDOM SYSTEM
4.4 MACRHINE TOOL CHATTER

45 SINGLE DEGREE-OF-FREEDOM SYSTEMS WITH
MOMNLINEAR ELEMENTS
4.5.17  Nonlinear Stiffness
452  Monlinear Damping

4.6 SUMMARY
EXERCISES

IEXN NTRODUCTION

In Chapter 3, we illustrated how the governing equation of a single degree-of-
freedom system can be derived. In this chapter, the solution of this governing
equation 15 determined, and based on this solution, the responses of single
degrec-of-freedom systems subjected to different types of initial conditions
are discussed. As pointed out in Chapter 3, it is shown that the free responses
can be characterized in terms ol the damping Factor. The notion of stability of
a solution is introduced and briefly discussed. The problem of machine-tool

127
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128 CHAPTER 4 Single Degreeolrreedom System

chatter during turning operations is also considered and numerical determi-
nation of stability for this problem is illustrated. The forced responses of sin-
gle degree-of-freedom systems are addressed in Chapters 5 and 6.

FFor all linear single degree-of-freedom svstems, the governing equation

can be put in the form of Eq. (3.22), which is repeated below.
A

.51’_: + 2{w, d F mﬁx=ﬂﬂ (4.1)
i - clt i

A solution is sought for the system described by Eq. (4.1) for a given set
of initial conditions. This type of problem is called an initial-value problem.
Since the systemn inertia, stiffness, and damping parameters are constant with
respect to time, the coefficients in Eq. (4.1) are constant with respect to time,
For such linear differential systems with constant coefficients, the solution
can be determined by using time-domain methods and the Laplace transform
method', as illustrated in Appendix D. The latter has been used here, since a
general solution for the response of a forced vibratory system can be deter-
mined for arbitrary forms of forcing. However, a price that one pays for gen-
erality is that in the Laplace transtorm method the oscillatory characteristics
ol the vibratory system are not readily apparent until the final solution is de-
termined. On the other hand, when time-domain methods are used. the ex-
phicit forms of the solutions assamed in the inital development allows one w
readily sce the oscillatory characteristics of a vibratory system. In order to
provide a flavor of this complementary approach, time-domain methods are
summarized in Appendix I,

The ease with which we can use Laplace transforms to solve linear, ordi-
nary differential equations is illustrated by solving for the response of a sys-
tem with a Maxwell material later in the chapter and by selving for the re-
sponse of a two degree-of-freedom system in Chapter 8. We also show how
to use Laplace transtorms to solve for the free responses of thin beams in
Chapter . An advantage of using the Laplace transform approach is the con-
venience with which one can see the duality of the responses in the time do-
main and the frequency domain; this is important for understanding how the
same information can be expressed in the two dilferent domains.

In this chapter, we shall show how to:

*  Determine the solutions for a linear, single degree-ol-freedom system that
is underdamped, critically damped, overdamped, and undamped.

* Determine the response of single degree-of-freedom systems to initial con-
ditions and use the results to study the response to impact and collision.

*  Determine when a system is stable and how to use the root-locus diagram
to obtain stability information.

* btain the conditions under which a machine tool chatters.

* Use different models for damping: viscous (Voigt), Maxwell, hysteretic.

+«  Examine systems with nonlinear stiffness and nenlinear damping.

'See Appendix A.
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4.2 Free Responses of Undamped and Damped Systems 129

FREE RESPONSES OF UNDAMPED AND DAMPED SYSTEMS

4.2.1 Introduction

In this section, the responses of undamped and damped single degree-of-
freedom systems in the absence of forcing—that is, f{f} = O0—are explored in
detail. These responses are also referred to as free responses, and when the
system is undamped or underdamped, the responses are referred to as free os-
cillations. In the absence of forcing, the single degree-of-freedom given by
[q. (4.1) reduces to

el x elx ] :
P + 2w, s + wpx = (4.2)

Free responses are the responses of a system to either an initial displace-
ment x(f) = X,, an initial velocity () = V,, or to both an initial displace-
ment and an initial velocity. Based on the discussion in Appendix D, there are
four distinct types of solutions to Eq. (4. 1) depending on the magnitude of the
damping factor £. These four regions describe four different types of systems
as follows.

Underdamped System: 0 < ¢ =< 1

When the damping factor is in the range 0 << £ < |, we denote the system as
an underdamped system. From Egq. (3.20), we see that in this region, the
damping coefficient ¢ is less than the critical damping coefficient c.. For val-
ues of ¢ in this range, the solutions to Eq. (4.2) are given by either Eq. (D.15)
or Eq. (D 16); that is,

- v + o, X,
xr,{.’ -"“"ri_‘,n!«;[_mnl!:l TE “ n; ! r{-‘ "'u"rﬁinif!-",-,l!} (4.3)
o

xir)

ar
) = Aje " sinlwyt + @) (4.4)

respectively, where

1

Wy = m,,*v’:l e (4.5)

where w, is the damped natural freguency and

'I ¥ V.-:- T ";{"-:' X.l -
A, = .'x,;—( ”‘)

iy

2 | iy X,
&y = lan (4.6)
1'}'.:!' + gwu xrj
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132 CHAPTER 4 Single Degree-oltieedom Syslem

Design Guideline:  The free response of a critically damped system
reaches its equilibrium or rest position in the shortest possible time.

In the absence of forcing, when £ == 0, the displacement response always
decays to the equilibrium position x(7) = (. However, this is not true when
¢ << U; the response of the system will grow with respect to time. This is an
example of an unstable response, which is discussed in Section 4.3.

Next, we present three examples that explore the free responses of under-
damped and critically damped systems in detail.

A microelectromechanical system has a mass of 0.40 ug, a stiffness of
(.08 N/m, and a negligible damping coefficient. The gravity loading is nor-
mal to the direction of motion of this mass. We shall determine and discuss
the displacement response of this system when there is no forcing acting on
this system and when the initial displacement is 2 um and the initial velocity
15 Zero.

Since V, = fiH = { = 0, we see from Eq. (4.10) that the displacement
response has the form

x(f) = X, cos[w,t) ()
where
_Jk
fedy, 1,\'|| P {h]

From Eq. (b}, the natural frequency is

i

0.08 N/m
@, = / 5 = 14142.14 rad/s
N 0.40 x 10 ke

or

w, 1414214
* = ——"— = 2250.8 Hz

B -E-‘:IT Qar

Ja

Substituting this value and the given value of initial displacement 2 pm into
Lq. (a) resulis in

x(1) = 2 cos(14142.144) pum (c)

LEquation (c) is the displacement response. Based on the form of Eq. (a)
or BEg. (¢}, it is clear that the displacement is a cosine harmonic function that
varies periodically with time and has the period

Obras protegidas por direitos de autol
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20| |
T — 'r — 4442{_} f-l'--.rl'
w, [, 22508

From the form of Eq. {(c), it is clear that the response does nol decay, and
hence, the response does not settle down to the static-equilibrium position.
The system, instead, oscillates harmonically about this equilibrium position
with an amplitude of 2 pm.

A wide-base truck tire is characterized with a stiffness of 1.23 % 10° MN/m,
an undamped natural frequency of 30 Hz, and a damping coefficient of
4400 N-s/m. In the absence of forcing, we shall determine the response of the
system assuming non-zero mnitial conditions, evaluate the damped natural
frequency of the system, and discuss the nature of the response.

Let the mass of the tire be represented by m. Based on the equation of
motion derived in Chapter 3 for the system shown in Figure 3.1, the govern-
ing equation of motion of the tire system from the static equilibrium position
is given by Eq. (4.2); that is,

d x el

17 + 2o, i + mf, xr=10 (a)

For this case,
= 2q ¥ 30 = 188.50 rad/s

¢ Ccwy, 4400 N-s/m * 188.50 rad/s
ol 2% 1.23 X 10°N/m

l'_l'j”

-

= = {.337 (b}
2w,

Since the damping Factor s less than 1, the system is underdamped. Hence,

the solution for Eq. (a) 1s given by Eq. (4.4); that is, the displacement response
of the tire system about the static-equilibrium position is

X)) = Ae " sinfw, ! + @) ()

where the constants A, and ¢, are determined by the initial displacement and
initial velocity as indicated by Egs. (4.6). The damping factor { and the natu-
ral frequency w, are given by Eqs. (b}, and the damped natural frequency wy
is determined from Eg. (4.5) as

@y =0,V 1 — {2 = 188.50V1 — 0.3372 = 177.5 rad/s

The response given by Eq. (¢) has the form of a damped sinusoid with a
period

k - - 5 - e — - i — -
Loras proeqiaas por direllos age autol
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138 CHAPTER 4 Single Degreeolrreedom System

Force Transmitted to Fixed Surface

We shall now determine the dynamic component of the force transmitted to
the base of a single degree-of-freedom system such as that shown in Fig-
ure 3.1. This force is given by Eq. (3.10}); that is,

Fp=oct+ kx (4.22)
Upon substituting Egs. (4.13) and (4.14} into Eq. (4.22), we obtain

k‘-"':,f? F
Fut) = s [—2¢ sinfw it — @) + sin(w,f)] {4.23)
)

ALt = (), the reaction force acting on the base is determined from Eq. (4.23)

[ he
P} = LRV, 2KV, 5
i } - g h'“{ﬁf} = @, (.24

Thus, when the mass of a single degree-of-freedom system is subjected to an
initial velocity, the force is instantaneously transmitted to the base. This un-
realistic characteristic 1s a property of modeling the system with a spring and
viscous damper combination in parallel. The viscous damper essentially
“locks™ with the sudden application of the velocity and is thereby momentar-
ily rigid. This temporary rigidity shorts the spring and instantaneously trans-
mits the force to the base. Representing a support by a combination of a lin-
ear spring and linear viscous damper in parallel is called the Kelvin-Voigt
model, which is one type of elementary viscoelastic model. A second type of
elementary viscoelastic model, called the Maxwell mode!, consists of a lincar
spring and a linear viscous damper in series, and this model 15 discussed in
Example 4.7.

State-Space Plot and Energy Dissipation

The values of the displacements and velocities corresponding to these max-
ima and minima can also be visualized in a state-space plot, which is a graph
of the displacement versus the velocity at each instant of time. This graph for
the system considered here is shown in Figure 4.5, As time unfolds, the tra-
jectory initiated from a set of initial conditions is attracted to the equilibrium
position located at the origin (0, 0). When { =0, the state-space plot in terms
of the nondimensional displacement and nondimensional velocity is a circle.
I this plot s made m terms of dimensional quantities, 1t will be an elhipse.
We now show how the energy dissipated by the system in the time interval
=15 G

damper system, as shown in Figure 3.2, which is translating back and forth

can be determined. The syslem ol inlerest is a HPTiI‘Ig-ﬂ'IHF.H-

along the x-axis. The energy dissipated by the system is equal to the difference
between the sum of the kinetic energy and the potential energy in the final state
and the sum of the kinetic energy and the potential energy in the initial state,
Noting that the potential energy in the initial state is zero, and the kinetic en-
ergy in the final state is zero, the energy that is dissipated is the difference be-
tween the initial kinetic energy and the potential energy that is stored in the

.|'.-._--_ proteqidas por direitos de
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140 CHAPTER 4 Single Degreeolreedom System

The significance of these results is illustrated with several examples, where
tree oscillations of underdamped systems due to impacts are considered,

Consider a vehicle of mass m that is travelling at a constant velocity V, as
shown in Figure 4.6a. The bumper is modeled as aspring £ and viscous damper
¢ in parallel. 1f the vehicle's bumper hits a stationary barrier, then after the im-
pact, the displacement and velocity of the mass are those given by Egs. (4.13)
and (4.14), respectively. These results are used to determine the coefficient of
restitution of the system and the amount of energy that has been dissipated un-
til the time the bumper is no longer in contact with the barrier.

The bumper is in contact with the barrier only while the sum of the forces

kx(t) + ¢x(f) > 0

that is, while the spring-damper combination is being compressed, At the in-
stant when they are no longer in compression the acceleration is zero; that is,
the time at which the sum of these forces on the mass is zero. The first time
instance at which the acceleration is zero is given by Eq. (4.20) for p = (), and
the corresponding velocity is given by Eq. (4.21).

Based on Newton's law of impact, the coefficient of restitution € is de-

fined as
_r:1'x-cl1iu:lf - l’I:mrri-u:r:qul-u:r:'ru[:n;n.'l: B |: er.‘hi-;:ln:}ul’lu: impact
& = — — — -— = — e e |:.H::|
|:1"I".'u|1||.'|e . I’|:l.’|.'rri-;"r:]l!:-|.'I'||r-|‘.' it [i.'l-"ﬂjlii.'h.!:l before tmpact

where ¥ .piqe 15 the vehicle velocity, ¥y e 15 the velocity of the barrier, and the
assumption that ¥y, .- 15 zero has been used; that is, the barrier is fixed. Then,
making use of Eq. {a) and Eq. (4.21) with p = 0, we find that

_j“rm:] i"{).-a-E' Anibap
E — —

— = 2pfane
#{0) v, ¢ ®)
We now make use of Eq. (b) to examine how the coefficient of restitution
€ depends on the damping factor {. Considering first the undamped case, we
note from Eq. (4.15) that ¢/tan ¢ — 0 as { — 0, and, therefore, € — 1. In other
words, there are no losses and the system leaves with the same velocity with
which it arrived. This is consistent with the fact that this is an elastic collision.
When £ — 1, the system becomes critically damped and @ftan ¢ — 1 and,
therefore, from Eq. (b), we find that € — ¢ '3; that is, the mass leaves the bar-
rier with a velocity of 0.135V .

“See also, V. I Babitsky, Theory of Vibro-Impact Svstems and Applications, Springer-Verlag.
Berlin, Appendix 1 (1998).
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FIGURE 4.6

(a} Model of 2 car bumper colliding with a stationary barrier, (b) time history of velocity of mass, and {c) equivalent impact configu-
ration, In this equivalent configuration, a mass moving with a velocity V), impacts a barrier, which is represented by a spring and

damper combination,

The amount of energy that the system dissipates during the interval (1 =
f = f,, is the difference between the initial Kinetic energy and the Kinetic
energy at separation. Note that the vehicle does not have any potential energy

when it 15 not in contact with the barrier. Thus,

. | A I

Eges = 5 mV3 = m{i{t) ' = mV;
ar

Eli]-i.'\-i'\u — [,l _ {3 .1,¢..-'1;J|-“|5]

‘Elnil

| 4 .
2, —Etan ¢
S mVe

—

where £, is given by Eq. (4.27). These results are summarized in Figure 4.7,
It is noted that these results have been obtained for a collision with a single

impact.

s

- ] N - e Ko | - ™ - . 1 - r= ™
15 DU = LR L OS5 O autol
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Single Degreeolreedom System

0.9} e ]
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¥ .2 0.4 0.6 0.8 |
L
FIGURE 4.7

Coetficient of restitution and fraction of energy dissipation for impacting single degree-of-
freedom system.

We shall now consider the effects of dropping onto the Hoor a system that re-
sides inside a container that has a coefficient of restitution e with respect to
the floor. The system is shown in Figure 4.8, If the container falls from a
height h, then the magnitude of the velocity at the time of impact with the
floor is

V, = V2eh

At the instant £ = 0 after impact, the container bounces upwards with a ve-
locity whose magnitude is €V,. Then at f = 0, the container and the single
degree-of freedom system can be modeled as a single degree-of freedom sys-
tem with a moving base as discussed in Section 3.5. Thus, if we define the rel-
ative displacement

z2(t) = x(1) — (1) ()

then, from Eq. (3.30) we have

¥
d°z dz dy
m—Ho—"t kg =—m— ih)
et i di*
However, ¥ = —g, since the container is decelerating during the rebound
upwards. Then Eq. (b) becomes
Obras protegidas por direitos de autol
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L ‘T_q_' T
& 1_.-'“

(b

fiL)

FIGURE 4.8

single degree-of-freedom system inside a container: (a) dropped from a haight hand
(b] on rebound immediately after impact with the floor.

d*z dz .
i e +.L i + kz = mguif) (¢)
where u(f) is the unit step function. The initial conditions are
2(0) = x[0) — WD) =0
H0) = &0) — H0) = =V, — (eV,)
= —(1 + &)V, = —(1 + €)V2gh (d)

The solution to Eq. (¢) for ) << £ << | and subject to the initial conditions
given by Eq. (d) is determined from Eq. (I3.11). Thus, after substituting

fit) = mgu(r), we find that
it —R ' ; 5
= ) = — — 5“"*"s:in(\"'--f"fl — T,
R VS
| , s
, s sin{ V1 — eyt + @) (e)
V=

where @ is given by Eq. (4.15), 8,, = mglk, and the coefficient of restitution-

+ 1 =

dependent parameter R is
{24
K=(1+ fi= f
LN, "

The corresponding velocity 1s

zlt R .
(1) = — =g t_-:in{"v“’rl — Pwt — @)
Bty V1 — 2

I . ’ -
AL {11 S e F '
o =g Smain{ W = w, 1) (g)

V1= 22
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(I - ' : : .
{ (1.1 0.2 .3 0.4 15 0.6 0,7

FIGURE 4.9

Mormalized maximum relative displacement of a system inside & container that is dropped
from a height h as a function of coefficient of restitution of the container and the damping
ratio af the single degree-of-Treedom system,

The extremum of the relative displacement is determined from 2., = 2(f,.,)

where #,,,, is the earliest time at which ¥1,..) = 0. In this particular case, an

explicit analytical expression for f_ . cannot be found, so the maximum dis-
placement is determined numerically from Eq. (e). The magnitude of the
maximum displacement is a function of the initial velocity, which is a func-
tion of the drop height A, the coefficient of restitution of the container, and the
damping ratio and the static displacement of the spring of the single degree-
of-freedom system inside the container. The numerically obtained results are
shown in Figure 4.9, We see that there are many ways by which one can de-
crease the maximum relative displacement of the mass, which lead to the fol-

lowing design guidelines.

Design Guidelines: To minimize the maximum relative displace-
ment of the mass, keep /i and, therefore the velocity V., as small as pos-
sible. Make the container of a material that absorbs the impact, so that
the coefficient of restitution 15 as small as possible. Make the natural
frequency of the single degree-of-freedom system as low as possible.
alnce, in packaging, the mass 15 usually not a parameter that can be
specified, one has to make the equivalent spring as sofl as practical. In-
crease the equivalent damping of the packing material.

Obras protegidas por direitos de auto
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We shall now modify the single degree-of-freedom system shown in Figure
3.1 to obtain a more realistic description of the reaction force transmitted to
the fixed support, when the inertial element is given an initial velocity, As
noted earlier, if a Kelvin-Voigt model is used, there is an instantaneous reac-
tion force at the base when an initial velocity is imparted to the mass. This un-
realistic response is eliminated by using the modified system shown in Fig-
ure 4.1 1a, where we have introduced a linear spring &, in series with a linear
viscous damper ¢. The combination of the linear spring &, in series with the
linear viscous damper ¢ is called a Maxwell mode!l. To describe the motion of
the system, we need, in addition to the displacement variable x of the mass m,
another displacement variable x; 1o describe the displacement at the spring-
damper junction in the Maxwell model. Both x and x; are measured from their
respective static-equilibrium positions.

Governing Equations of Motion and Solution for Response

The governing equations are obtained for the general case with forcing and,
from this case, the free response of the mass subjected to an initial velocity is

-ﬂ“l . _I'{-']l, m l.t | Mm%

Fi=kilx — x9)

.Ir‘-] E'.-i'l._f

| F| = ciy

{a) (bl
FIGURE 4.11

[a) Single degree-of-freedom system with a spring added in series with the damper and
(b] forces on the system’s elements.

¢ - - - - o - - -t - & - - ] = -
by el g R Pt | (IR 1
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148 CHAPTER 4 Single Degreeolrreedom System

determined. Making use of Figure 4.11b and carrving out a force balance
along the vertical direction for the mass m and a force balance for the
Maxwell element, we arrive at

%y
m 1 + kx + K (x — x) = f(1)
i :
[:vl;."l.'..-J
kiix —x,) =¢ ia
1 — 1) = o i )

Since we have an additional first-order equation, apart from the second-order
equation typical of a single degree-of-freedom system, the vibratory system of
Figure 4.11 is also referred to as a one and a half degree-of-freedom sysiem.
Introducing the natural frequency
| &
W, = "'.,II'I - ib)

and the nondimensional quantities

T = m"r
ky
— C
Y I c)

Eqgs. (a) are rewritten as
¥+ (1 y)x =y = fr)/k
Yx = yx; = 2Lx; (d)
and the overdot indicates the derivative with respect to 7 and

2 == (@
i

In the limiting case, when y — 00 (i.e., K| = o0), the second of Eqs. (d) leads
to a Kelvin-Voigt model with a linear spring of stiffness & in parallel with a
linear damper with damping coefficient ¢. Therefore, Eqs. (d) can be used to
study a vibratory system with a Maxwell model as well as a Kevin-Voigt
model.

It we represent the Laplace transform of x{7) by Xi{s), the Laplace trans-
form of v {7) by X, (5], and the Laplace transform of fi7) by F(s), then, from
pair 2 in Table A of Appendix A, the Laplace transforms of Eqgs. (d) are

(52 + 1+ ¥)X(5) — ¥Xds) = G(s)

yX(5) — (y + 2i5)X4d5) =0 (1)
where we have assumed that x,{0) = (), and used the notation
Fis) .
Gs) = Y + s} + £(0) (o)

Upon solving for X(s) and X,(5) from Egs. (), we obtain, respectively,

1] Tl e e e al=T= - - - ] - -
Lbras protegigas por direitos de autol
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Gis)y + 24s)

X(s) =~ —
) 25 +ys +24(1 +y)s + y
vl 8
XAs) = — : ) (h)
207 + oy + 201 + y)s + v
Force Transmitted to the Fixed Support
From Figure 4,1 1h, the reaction force on the base is seen to be
. cdxy
fp=F +F=¢ + kx (i)
clt
which, in terms of the nondimensional quantities given by Eqgs. (¢}, is wril-
len as
Fy
= 2%, + x '
L X (J)

where the overdot is the derivative with respect to 7. Upon taking the Laplace
transform of Eq. (j), again assuming that x,{0) = (), and using Egs. (h), we
lind that

Fe  Gls)[y + 2£01 + y)s]

-+ 2 (k)
ko208 + st + 2801+ y)s + y

This expression will be revisited in Example 5.13.
We shall limit the rest of our discussion to the case where the applied
force and the initial displacement are zero; that is, fir) = 0 and x({)) = {}, and

the initial velocity is

dx{()} dx(0])
= w, =V, (1)
cli ar
Therefore, Eq. (g) simplifies to
G(s) = Ve )
i8) = e (1)
Upon substituting Eq. (m) into Eq. (k), we arrive at
Fy Yy + E.ﬂ] +?:'£
(n}

(kV,/w,) : 285 + }f.ﬁ':; + 281 +¥)5 + ¥

Before evaluating Eq. (n), we recall that the limiting case when y — o0 (ie.,
k, — 0o) recovers the Kelvin-Voigt model, where a linear spring & is in paral-
lel with a linear viscous damper ¢. For this limiting case, we divide the nu-
merator and denominator of Eq. (n} by y and take the limit as v — oo, This
operation results in
Fg 1 4 2I5 ;
. ! e o)
(VY fw, o+ 2y + 1
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FIGURE 4.12
Reaction force of the system shown in Figure 4.11 for £ = 0.15.

Upon using Laplace transform pairs 14 and 16 in Table A of Appendix A,
the inverse Laplace transform of Eq. (o) results in Eq. (4.23). The numeri-
cally’ computed inverse Laplace transforms of Eq. (n) for { = 0.15 and
¥ = | and Eq. (0) for { = (.15 are shown in Figure 4.12. At 7 = {}, we see
that the reaction force £y has a discontinuity for the Kevin-Voigt model, while
this reaction force is zero for the Maxwell model.

As a continuation of Example 4.7, we now consider the case where the sup-
port consists only of a Maxwell element; that is, the spring & is absent. In this
case, we again examine the force transmitted to the fixed base. Setting &£ = 0
in Eq. (a) of Example 4.7, we arrive at

dx
" 7] + kilx — x;) = fl1)
dx,
kilx — x) = c—2 (a)
el

‘The MATLAB function 1 1aplace from the Symbolic Toolbox was used.

™ S e e L s S e S
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Introducing a new set of quantities

- K
T = wy,l and Wy, = *; (b)
i
Eqg. (a) is written as
¥ - ko zf[.f}l.'llk|
X — x; = &y, (c)

where the overdot now indicates the derivative with respect to 7 and

3F = L CET 4
£ 3 (d}

If we represent the Laplace transform of x(7') by X(5), the Laplace trans-
form of x,(7") by X,(5), and the Laplace transform of fir") by F(5), then, from
pair 2 in Table A of Appendix A, the Laplace transforms of Egs. {c) are

(s° + 1)X(s) = Xuls) = Gils)
X(s) = (1 + 2,5)X,(s) = 0 ()
where we have assumed that x {0} = 0 and

Fls
Gi(s) = .f: ) + 5x(0) + X(0) (f)
!

Upon solving for X(s) and X,(5) in Egs. (e), we obtain

Gils)(1 + 2445) Gi{s)(2L + 5)

Xig) = = T T

) {28 +s5+28) s(st+ 255+ 1)

Gyls)
X5) = = (2)
als) 20,5 + 5+ 28) 8
where

2 l i (h)
Lo T - = \

r 2L, Clyy

MNote that £, << 1 only when {; = (0.25.
When the spring with stiffness & is absent, the reaction force on the base is

which is rewritten in terms of the nondimensional guantity given by Eq. (b) as

Fu(r')
=20y (i
IilrI
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4.2.3 Initial Displacement

We now examine the free response of an underdamped single degree-of-
freedom system with a prescribed initial displacement. When a system is
subjected to an initial displacement only, we set V, = 0 and Eq. (4.6) for the
amplitude and phase simplify to

X

A=
| Vi - & _
. -
Therefore, Eq. (4.4), which describes the displacement response, becomes
¥ ,

x(f) = ————e " sin(w,t + ¢) (4.28)
V1= g2

Aﬂ’.‘

Pq = tan ¢

and, after using Eqg. (D.12), the velocity and acceleration are, respectively,

X, o ;
i[r} = y1) = ——= ! = £ S8l cinf wt)
Vi— &
X ) .
Xit)=alt) = —; = = sinfwgd — ) (4.29)
M=

Equations {4.28) and (4.29) are plotted in Figure 4. 14 and the correspon-
ding state space plot is shown in Figure 4.15 along with their respective time
histories. As time unfolds, the trajectory is attracted to the equilibrium posi-
tion located at the origin ({, ().

Logarithmic Decrement”
Consider the displacement response of a single degree-of-freedom system
subjected to an initial displacement as shown in Figure 4.16. The logarithmic
decrement & is defined as the natural logarithm of the ratio of any two suc-
cessive amplitudes of the response that occur a period T, apart, where T is
aiven by
C
P T
T, = = (430}
{ Ju") -
“y @, V1 =&

From these two amplitudes, it s possible 1o determine the damping
ratic £. To this end, we determine a relationship between the logarithmic
decrement and the damping factor. We start from

w x(1)
8 = Jm(_ﬂ:‘+ = TJ}) 4.31

"Although the definition of the logarithmic decrement is provided in Section 4.2.3, it applies
equally to all free responses considered in Section 4.2,
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Time histories of displacement, velocity, and acceleration of a system with a prescribed mitial
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State-gpace plot of single degree-of-freedom system with prescribed initial displacement,
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158 CHAPTER 4 5Single Degree-alfieedom Syslem

squares represent the data through which the fitted curve is depicted as a solid
line. As discussed in Section 5.3.2, the estimation of parameters such as
damping factor and natural frequency can be also carried out based on the sys-
teim transler function.

It is found from a plot of the response of a single degree-of-freedom system
o an initial displacement that at time f, the amplitude is 40% of its initial
value. Two periods later the amplitude is 10% of its initial value. We shall de-
termine an estimate of the damping ratio. Thus, from Eqg. (4.34)

§ = I| (r"'q-) = (.693
2"\ 0.1

Then, from Eq. (4.36), we find that

|
— = 0.11

¢ = i @rlosos]

4.2.4 Initial Displacement and Initial Velocity

We shall now consider the case when a system is subjected to an initial dis-
placement and an initial velocity simultaneously. The solution is given by
Eq. (4.4), which is repeated below for convenience,

A1) = Ae 5% sin{wyt + @) (4.37)

FFrom Egs. (4.6), we find that the amplitude and phase are given by

II A 'LI."” + gmrlxﬂ) { "-.VI' + 'E-]
A, =X+ = X\ [1+
o \ﬂl ( ﬂ-*;.l G“'\, -l _ ‘;-3
mr.l'xﬁ I ‘Ivfi__ '_E?'
. S Sl I L‘..'ITI e L Sl
Vo + fw, X, i+ ¥,

Fa = tan {433]

and V, = V, /M{w,X,) is a velocity ratio. The velocity response is determined
from Eq. (4.37) to be

i) = —Awe " sinlwg + ¢4 — @) {4.39)

where @ is given by Eq. (4.15).

The numerically evaluated result for x{(f)/X, is shown in Figure 4.18. For
“small™ values of V.. the displacement response is similar to that obtained for
a system with a prescribed initial displacement and for “large™ values of 'V,
the displacement response is similar to that obtained for a system with a pre-
scribed nitial velocity.

- e . 4 - el e - P LRl n] Ly - i
Oras proegioas por airaiios ae autol
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FIGURE 4.18

Displacement response of a system with prescribed initial displacement and prescribed
initial velocity.

Consider the state-space plot shown in Figure 4. 19, From this graph, we shall
determine the following: {(a) the value of the damping ratio and (b} the time
Tias — Wl at which the maximum displacement occurs.

FFrom the graph, the initial conditions are x{(0) = X, and v{()) = 1.6X, w,.
To determine £, the logarithmic decrement is used. For convenience, we
select the values of the displacement from Figure 4.19 that are along the line
vit) = (). Then,

at) = 095X, and x(t+ Ty = 05X, (a)

and from Eq. (4.34) and Eq. (a), we determine the logarithmic decrement

§=1 (U'% x") In{1.90) = 0.642 (b}
= In — | = In(1. = (1.642

05X,
Then, from Eq. (4.36) and Eq. (b}, we find the damping factor to be

| 1
N1+ (2a/8)R V1 + (2mf0.042)?

& = (.10 (c)

por direitos ae autol
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4.4 Machine Tool Chatter 165

RN MACHINE TOOL CHATTER

In Figure 4.21, a medel of a turning operation on a lathe is shown. When the
cutting parameters such as spindle speed and width of cut are carefully cho-
sen, the turming operation can produce the desired surface finish on the work
piece. However, this turning operation can become unstable for certain values
of spindle speed and width of cul. When these undesirable conditions are
present, the ool and work piece system “chatters,” producing an undesirable
surface finish and a shortening of tool life. In this section, we shall explore the
loss of stability that leads to the onset of chatter.

For a rigid work piece and a flexible tool, the cutting force acting on the
tool due to the uncut material and the associated damping can be modeled as
shown in Figure 4.21. The mass m represents the mass of the tool and tool
holder, & is the stiffness of the tool holder’s support structure, and ¢ is the
equivalent viscous damping of the structure. The dynamic cutting force £, is
the sum of the forces due to the change in chip thickness and the change in
the penetration rate of the teol.'' Thus, we have

2o dx
Fo= ki [x(f) — px{r — 20/N)] + K= 5
Culling Charge in chip thickness Darnping

slifTness

where p is the overlap factor (0 = p = 1), &, is an experimentally determined
dynamic coefficient called the cutting stiffness, K is the experimentally deter-
mined penetration rale coefficient, and A s the rotational speed of either the
tool or the work piece in revolutions per second. Then carrying out a force
balance based on Figure 4.21, the tool vibrations can be described by the fol-
lowing equation

d°x | K\ dx .ﬁ:l) k|
- + + 1+ — Jx— - =0 (4.52%
T + (Q kﬂ) I ( . T L,u P x(T I,.'fﬂ]l 0 1)

.
Teme-delny effect due 1o uncwt

chip duning previous pass

Wiork plece Tl

.....

FIGURE 4.21

Muodel of a tool and work piece during turning,

"8, A. Tobias, Machine-Tool Vibration, Blackie & Sons, Lud., Glasgow, pp. 146-176 (1963).
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4.4 Machine Teol Chatter 167

In Eqgs. (4.54), the quantities K/&, w, and &/k are known, and the values
of the nondimensional spindle speed £} are varied over a specified range. At
each value of (), the value of @ is determined numcricull}-ﬂ rom the second
of Eqgs. (4.54). The values for €) and e are then used in the Arst of Egs. (4.54)
1o determine the positive values of {} that satisfy the equation; that is, those
values of £} and w for which

I K pk sin(ef1))

O k0 & @

In the plot of £} versus (0, we can show the regions for which the system is ei-
ther stable or unstable. Representative results are shown in Figure 4,22, The
shaded regions, which are in the form of lobes, are regions of instability, and
are referred to as stability lobes, The asymptote to these lobes is shown
in the figure by a dashed line. If one conservatively chooses the cutting pa-
rameters so that one is below this asymptote to the lobes, then based on the
linear theory presented here, the tool will not chatter. Of course, one can also
choose spindle speeds that correspond to regions between the stability lobes
as well.

4) : P Unstable

o
[
LA

i Kfk =0.0029

(0785
LS LOTE Stahle

Y

0

i 0,05 0.1 015 (1.2 0.25 0.3 (.35
1}

FIGURE 4.22

stability chart for one set of parameters in tuming: & = 1.

2The MATLAR lunction £ zera was used.
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168 CHAPTER 4 Single Degresolreedom Syslem

X} sINGLE DEGREE-OF-FREEDOM SYSTEMS WITH NONLINEAR ELEMENTS

4.5.1 MNonlinear Stiffness

We llustrate the eflfects that vwo different Lypes ol nonlinear !-;}‘.lringf-; can have
on the free response of a syslem when f-:ul:'sjuclu{i to either an initial L]iH[’.‘hlL‘l’.‘v
ment or initial vu]m:it:,r.

system with Hardening Cubic Spring
First, we consider a system that has a spring whose stiffness includes a com-
ponent that varies as the cube of the displacement. After using Eq. (2.23) for
the nonlinear spring force, the governing equation is

dx dx 3

AU Tk xtald=0 (4.55)
dr? dr

where the nondimensional time variable 7 = w, /. We solve Eq. (4.535) numer-
ically,”” since it does not have an analytical solution. We assume that
¢ = 1 cm %, & = 0.15, and that the initial conditions are X, = 2 ¢m and
V., = (1. The results are shown in Figures 4.23, along with the solution for the
system with a lincar spring; that is, when o = 0.

We see from these results that the response of the system with the non-
linear spring is distinctly different from that with the linear spring. First, the
response of the system with the nonlinear spring does not decay exponentially
with time and second, the displacement response does not have a constant
period of damped oscillation. These differences provide one a means of dis-
tinguishing one type of nonlinear system from a linear system based on an
examination of the response to an initial displacement. In practice, the
nonuniformity of the period is easier to detect, since the dependence of fre-
quency (or period) on the amplitude of free oscillation is a characteristic of
a nonlinear system.

System with Piecewise Linear Springs

We now consider a second nonlinear system shown in Figure 4.24. In this case,
the springs are linear; however, the mass is straddled by two additional linear
elastic spring-stops that are not contacted until the mass has been displaced by
an amount d in either direction. The stiffness of the springs is proportional to
the attached spring by a constant of proportionality g (g = 0). When p = (), we
have the standard linear single degree-of-freedom system, and when p == 1, the
clastic spring-stops are stilfer than the spring that is permanently attached o

the mass. The gm-‘urning_ uquuliun du&crihing the motion of the systerm g
2] + ﬁf{!}? + v+ whiyv) =0
3 =i ¥ HALY) =
7~ dr

"The MATLAB function oded 5 was used.

“H. Y. Hu, “Primary Resenance of a Harmonically Forced Oscillator with a Pair of Symmeltric
Sct-up Elastic Stops,” £ Sound Vibration, Yol. 207, No. 3, pp. 39301, 1997.
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Comparison of the responses of lingar [solid lines) and nonlinear [dashed lines) systems with
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FIGURE 4.24

single degree-of-freedom system
with additional springs that are not
contacted until the mass displaces
a distance d in either direction
Source’ Heprinted by permission of
Federation of the European Bio-
chemical Societies from Journal of
Sound Vibration, 207, H.Y Hu., FEBS
Letters, "Primary Resonance of a
Harmonically Forced Oscillator with
a Pair of Symmetric Set-Up Elastic
Stops,” pp.393-401, Copyright ©
1997, with permission from Elsevier
acignce,

CHAPTER 4 Single Degreeolrreedom System

where

iyl =0

=y — sgn(y)

v =1
|¥| > 1

and, as discussed in Section 2.4.2. the signum function sgn{y) is +1 when
¥ = () and is —1 when v < 0. Furthermore, we have employed the following
definitions;

.'r-;{f B IIl.h: 4 27 =
.H 5o ‘]Iul d’ L1I1 ng v

T = wgl, W, = “Hllll' B

C

Mo,

Although it is possible to find a selution for this piecewise linear system,
here we obtain a numerical” solution for convenience. We shall determine the
response of this system when it 1s subjected to an initial {(dimensionless) ve-
locity dv(0Wdr = V Hw,d) = 10, the damping factor { = (.15, and the val-
ues of parel), 1, and 10). The resulls are shown in Figure 4.25. We sce that the
introduction of the spring-stops decreases the amplitude of the mass. In addi-
tion, it has the effect of decreasing the period of oscillation, which is equiva-
lent to increasing its natural frequency.

Iﬁ T ! T T
=0
-- =1 H
—-= =11}
2
I[.:I 1 [l 1
i 5 10 |15 20 25 30

FIGURE 4.25
Response of the system shown in Figure 4.24 with prescribed initial velocity V, e df = 10.

"The MATLAR function aded 5 was uscd.
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Index

A Applied forces. see Excitation of syslems
Absolute linear momentum, see Linear Momentum Arbitrarily damped systems, 469—-47]
Absolute value, GED Arbitrary forcing, 473475
Absolute velocity, see Velocity Asymmetric mode shapes, 378-374
Absorber, see Vibration absorber Asymptotic stability, 163164
Acceleration, 67, 220-221, 226227, 235-238 Axial force effects on beams, 625628
ahsolute, 67
[requency-response function based on, 218, 641 B
measurements, 235-238 Backbone curve, 273
responses, 220-221, 226-227 Band pass filters, 210
veetor, 349 bandwidth, 212-214
Accelerance, 218 center frequency, 211, 213
Accelerometers, 235-238 cutoft frequencies, 211-213
piezoelectric, 236 pass band ripple, 212-214
MEMS, see Microelectromechanical systems quality factor of, 212-214
Actoators, 387, 379 Banded matrices, 351
Airfoil, 424 Bandwidth, 212, 213-214
Adrplane elevator control tab, 278 Bars, 27-28, 683602
Amplitude density spectrum, 316 boundary conditions for, 686
Amplitude response, 185, 208-214, 276-277, 491494, mass moment of inertia of, 27-28
499504 mode shapes of, 683692
filter characteristics from, 210-214 natural frequencies of, 683642
frequency-response function based on, 208-214, Base excitation, 89-0(), 225-235, 238, 265-260
491494 acceleralion responses 1o, 226-227
linearity of system determined from, 276-277 automotive seat cushion, 308-310
multiple degree-of-freedom systems, 491494, displacement responses o, 226
4009504 excitation frequency and, 227-230
single degree-of-freedom systems, 185, 208-214, forced responses to, 225-235, 265-269
276277 governing equations for, 84490
vibration absorber, 499504 half-sine wave, 327329
Angular momentum, 17, 76, 341 harmonic excilation, 225-232
Aperiodic, 189, 516, 325 phase relationships in responses to, 227-230

701
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702 Index

Base excitation {caontinned )
slider-crank mechanism and, 265-26%
two degree-of-freedom system, 530-534
half-sine wave, 532-334
optimal damping, 532-534
velocity responses to, 226-227
vibration 1solation for systems with, 238
Beams, 540648
axial force effects on, 625-628
boundary conditions for, 552-562, 574588
cantilever, 560-562, 531-586, 629-630, 638045
clamped, 376-5377, 597-508
free at both ends, 5381
pinned, 597, 626
conservative systems, 355353
curvature, 544-543
eigenvalue problem for, 565-567
elastic foeundations, with, 625-626
extended Hamilton’s principle for, 543, 550-354
forced oscillations of, 632648
free oscillations of, 562632
frequency-response function for, 641644
governing equations of motion, 243362
harmonic foreing of, 640641
impulse response of, H38-6H34
interior elements attached to, 552, 553, 588-625
Kinetic energy of, 346
Lagrangian of the system, 548-530
mass attached to, 588625
mode shapes for, 562-632, 6313-636
moving load on, 6460648
natural frequencies &4 of, 562-632
tables of, 578, 582, 585, 601, 603, 604
node points for, 387, 577-379
nonconservative systems, 333-554
potential energy of, 546
static eguilibrium position of, 563

single degree-of-freedom system attached to, 388625,

tapered, 627-632
transient response, suppression for, 644645

translation springs attached to, 384-586, 589-390, 592

work and, 547-548
Bell and clapper system, 360-362, 494495
Bernoulli-Euler law, 5345-355
Bounce and pitch systems, 343-346, 357-358, 385387,

436—458, 488400

frequency-response functions for, 485490

governing equations for, 343-346, 357-358

harmonic forcing, response to, 436458

mode shapes of, 385-387

natural frequency of, 385-387

Boundary, force transmilled 1o a, 289200, 480-45]
Boundary conditions, see Beams, Strings, Shafts, and
Bars C
Cantilever beams, see Beams Center ol gravaty, 25, 27, 47
Center of mass, 16, 25
Central line, 343-544
Centrifugal governor, 114113
Centrifugal pendulum vibration absorber, 507310
Characteristic equations {see alse Beams), 164, 166, 370,
372, 399
damped systems, 164, 399
Characteristic roots, 164
Chatter, machine tool, 165-167
Chaotic, 516
Circulatory forces, 399, 406407
Clamped beams, see Beams Coefficient of friction, 33
Coefficient of restitution, 140
Collision, 140
Column matrix, 676
Complex numbers, 67964812
Complex stitfness, 251, 490
Compressed gas, potential energy elements of, 4647
Conformable matrices, 677
Conservation of energy, 408409
Conservation of momentum, 343, 351
Conservative force, 3
Conservative load, 347
Conservative systems, 551-553
Constant modal damping model, 468471
Constraint
equation, 13
geometric, 13
holonomic, 13
Continuous {distributed-parameter) systems, 33, 541-542
Contour curves for beams, 598-603
Convolution integral, 183, 663
Coordinates, 1315, 44, 6GB0-6R1
zeneralized, 13-15
polar, Gal—6s1
principal {modal), 440
Coulomb damping, 53, 88, 171-172, 246-247, 249,
252-253
energy dissipation by, 246-247, 249, 253253
equivalent viscous damping, 246-247, 249
force-displacement curves for, 252-253
free responses from, 171-172
soverning equalion for, 88
periodic excitations and, 246-247, 249, 252-253
Crankshaft oscillations, 111-113
Critical damping, 85, 130
Cubic nonlinearities, 44-45, 168, 2609-273
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Curvature, beam, 244-340

Curve fitting, 205207

Culel! frequency, see Band Pass Filter
Cutting process model, 59-6(0)

Cutting stiffness, 165167

D
D* Alembert’s principle, 70-71
Damped systems, 398407, 441, 444446, 466-467, 637,
See also Proportionally damped systems
eigenvalue problem for, 398-399, 466467
forced oscillation responses, 637
tree oscillation responses, 444446
free respoenses of, 398407
gyroscopic and circulatory forces of, 399, 406—407
lightly, 399, 403-404
normal-mode approach lor, 441, 444446
state-space matrix for, 466467
Damped natural frequency, 133
Damping
coefhicient, 50-52
equivalent, 247
maodal, 401
nonlinear, 54, 244, 246244
proportional, 399
viscous, 30
Damping-dominated region, 2000201, 204
Damping element, see Dissipation elements
Damping,
equivalent viscous, 93, 247-248
Coulomb, 247
fluid, 248
structural, 248
Damping factor, 83, 85-88, 05-96, 08, 100-101, 157-158
Damping force, 245248
Damping matrix 353, 404
Damping ratio, see Damping factor
Decibel (dB) scale, 661-662
Degrees of freedom, 1315, 54-56, 68-125, 126-179,
180-283, 284335, 336433, 434539
dynamics and, 13-15
linite systems, 3433
infinite systems, 35
maodels and, 54-55
multiple, 336534
single systems, 35-56, 68335
vibration modeling and, 34-56
Delta function, 287
Design guidelines, 119, 132, 144, 204, 200, 213, 223,
229, 260, 289, 304, 329, 378, 387, 527. 528, 574,
580, 581, 584,

Index 703

Design limitations, 304
Diagonal matrix, 676
Differential equations, 663-674
harmomic excitation forms of, 671-0674
Laplace transtorms for, 663-668
parameter variations of, 668660
state-space forms of, 669-671, 673674
Discrete systems, 54-35
Discrete Fourier transform (DFT), 216
Displacement response, 136137, 136188, 220
Displacement vector, 349
Dissipation elements, 49-54, 88-8Y9, 138-139, 171-173,
244235
Coulomb, 53, 88, 171172, 246247, 249, 252-253
Dissipation, energy, 244-248
Distributed-parameter (continuous) systems, 33, 341-542
Dy friction, see Dissipation elements
Dynamics, 4-19
kinematics and, 4-13
particles, 4-6, 15-17
rigid bodies, 6-7

E
Eardrum oscillations, 74
Earthquakes, see Base excitations
Eizenfunction, see also Mode shape,
Eigenvalue 370-373, 375-379, 393400
damped systems, 308400, 466467
eigenvectors for, 370-371, 467
free-responses and, 370373, 375379 308400
nondimensional parameters and, 375-37Y
normalized eigenvectors for, 467
proportionally damped systems, 464-467
state-space formulation for, 464467
undamped systems, 370-373, 465466
Ligenvector, see alse Modes, Mode shapes,
linear independence, 393, 396-397
normalization, 396
normalized, 396
orthogonality, 393, 304
Elastic foundations for beams, 625-626
Electronic assembly, isolation, 332
Electrodynamic vibration exciter, 2322355
Energy, 18~19
Energy density spectrum, 316
Energy dissipation, 138-139, 244-255
Equivalent mass, 95
Equivalent damping, 244235
Equivalent stiffness, see Stiffness
Excitation, 89493, [ 80283, 284335
hase, 80-90, 225-235, 238, 265269

Copyright 2009 Cengage Learning, Inc, All Rights Reserved. May not be copied, ECHIH'I-I.'.‘.-L']: or ﬁﬁ-pr.icz.i.l:n::.{], i.|1.w.hnle orin r.n.urt:



704 Index

Excitation { confinted )
governing eguations for, 8993
harmonic, 183-204
impulse, 287-30()
periodic, 180-283
phase relationships, 198-204, 221-225, 227-2130)
ramp, 310=-316
responses to, 180283
rotating systems with unbalanced mass, 90-92,
218-225
spectral energy of, 316317
step input, 300-310
transient, 284-335

excitation frequency ranges and, 193-204, 22]-2325,
227=230)

Irequency-response Tenction, 204218

harmonic components of systems and, 255-264%

harmonic excitation and, 183-204

umpulse excitation and, 287-30H)

magnitude of, 198-204

nonlinear stiffness and, 269-277

rotating systems with unbalanced mass, 218-225

steady-state, 184-145

transient excitations and, 284-335

transient. |84-186

velocity, 220221, 220-227

Fourier series, 259-267, 660
Fourier transforms, frequency-response function and,
Free oscillations, 80, 443-447, 478480, 562-632

Experimental modal analysis, 36
Extended Hamilton's principle, 343, 530-554
Extrema of responses, 136—137, 288-289

F
Fast fluid damping, 54
Fast Fourier transform (FFT), 216-217

Filter, see Band pass filter Fixed surfaces, [orce-balance

methods for, 73-74
Fluid, potential energy elements of, 456
Fluid damping, see Dissipation elements Force, TO-71,
8903, 138, 182-183, 289200
applied, 8943
boundary. transmitted to a, |38, 289-200, 48(-48]
governing equations and, T0-71, 80-03
inertia, 70-7
Force-balance methods, 70-76, 339-340
Force-displacement curves, 232-233
Forced oscillations, 434-539, 632648
heams, 632048
damped systems, 637
governing equations for, 632-633
harmonic forcing, 448458, 640-64]
mode shapes for, 633036
moving bases, systems with, 530-534
multi-degree-of-freedom systems, 435-540
single degree-of-freedom system. 181-284
state-space formulation for, 436—437, 458471
transmissibility ratio (TR) for, 525-520
undamped systems, 637-638
vibration absorbers, 433436, 4953525
vibration isolation of, 525-529
Forced responses, 180283, 284-335, See also Phase
relationships
acceleration, 220-221, 226227
amplitude, 185, 208-214, 276-277
base excitation and, 225-235
displacement, | 86188, 220, 226

axial force effects on, 625628

beams, 562-632

boundary condition elfects on, 374-588
damped systems, 444446, 475480
elastic foundation effects on, 625626
inertial elements effects on, 388613
interior heam elements, 3880625
Laplace transform approach for, 436437, 471481
mode shapes for, 562-632

natural frequency and, 5620632
normal-mode approach for, 443447
period of, 80

stitffness elements effects on, 388-613
tapered heams, 627-632

two degree-of-freedom systems, 443—447
undamped systems, 443444 446447

Free responses, 126179, 369409

conservation of energy during, 4084049
critically damped systems, |30

damped systems, 398407

eigenvalue problems lor, 370-373, 373379, 308-399
impact and, 140-144

initial displacement, 154161

initial velocity and, 136153

machine tool chatter and, 165-167

Maxwell model, 147153

mode shapes, 360303

multiple degree-of-freedom systems, 309409
natural frequency (vn), 369-343

nonlinear elements and., 168-173
overdamped systems, 130

single degree-of-freedom systems, 126-179
springs. 168-170

stability of systems and, 161-164

state-space plots, 138-139, 154155, 159-161
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undamped systems, 132, 369-398 single degree-of-freedom systems, 68—1235
underdamped systems, 1249 solid mechanics for beams, 334-546
viscoelastic bodies. collision of, 145-146 springs, 1031035
Frequency domain, 290-292, 298290 static-equilibrium positions, 72-76, T8-79, 345-348,
Frequency-response function, 204-218, 201-292, 3600
448458, 481495, 641644 translation, 80, 83, 85, 97-98, 103-103
accelerance, 218 Gravity loading, 45-49
amplitude response and, 206-214, 491494 Gyroscopic forces, 399, 406407, 419420
beamns, 641644 Ciyroscopic matrix, 348
curve fitting, 205-207 Gyro-sensor, slate-space lormulation lor, 460462
filter characteristics and, 210-214
Fourier transforms and, 215-217 H
harmonic forcing and, 448458 Half-sine wave pulse excitation response, 322-332
impulse excitation and, 2912032 Hand-arm vibration, 37-58, 364-36Y
mechanical impedance, 218 Hardening springs, 42, 168
mobility, 218 Harmonic components, 255-269
multiple degree-of-freedom systems, 448458, base excitation, 265-269
481495 Fourier series, 259-267
normal-mode approach and, 448458 periodic excitations with, 255-2649
parameter extension, 205207 periodic impulses, 264-265
pericdic excitations and, 204-218 periodic pulse train, 260-264
receplance, 217-218 saw-tooth forcing function, 260264
sensitivity of, 208-214 Harmonie excitation, 133204, 448458, 640-64 ],
single degree-of-freedom systems, 204218, 291202 a7 1-674
sysiem parameters and, 208210, 487188 all time, present for, 192-196
system with structural damping, 490-491 complex form of, 673-674
transfer function and, 214-217, 291-292, 481495 differential equations and, 671-674
Friction, see Coulomb damping displacement responses of, 186188
Fundamental frequency, 259 forced responses from, 183-204
phase relationships of, 198204
G sel time, present for, 1831492
Giear teeth, forced response from periodic excitation of, sine plus cosine, 671672
273-276 state-space solution for, 673674
Geomelric constraint, se¢ Constraint transient response of, 184186
Generalized coordinates, 13 unduamped systems, 196198
Generalized force, 94, 352 High pass filters, 210
Governing equations, GE-125, 338-369, 534562, Horizontal vibrations, 73
632-633uapplied forces, 89-93 Human body model, 55-58
beams, 343-362, 632633 Hysteretic damping, see Structural damping
damping and, 88-89
damping factor, 83, 85-88 I
excitation of systems and, 89-93 Identity matrix, see Matrices
torce-balance methods Tor, 7076, 339340 Impact, tree responses from, 140144
Lagrange’s equations for, 93=116, 351369 Impact testing, 332-333
linear systems, 79, 345351, 352-353 Impulse excitation, 287-300, 474, 638-630
micromechanical systems (MEMS), 107-10% arbitrary forcing and, 474475
momenl-balance methods for, 76-79, 340-344 beamns, 638639
multiple degree-of-freedom systems, 338-369 boundary, force transmitted to a, 289-290
pendulum systems, 99-100, 358-360 delta function, 287
rotating systems, 80, 85, 20-92, 97-08, 103-107, extremum of response to, 2858-280
115-116, 360-362 frequency domain for, 290-292, 208200
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706 Index

Impulse excitation (confinued )
frequency response function for, 291-292
impulse response, 291, 292-293, 638-639
initial velocity, similarity of response (o, 287288
Laplace transform for, 474
linear system responses to, 202208
single degree-of-freedom system, 287-300)
time domain for, 290202
transfer function for, 291-292
lwor degree-ol-Treedom system, 526528
Inertia, 2428, 70-T1, 238, 588-613
beam interiors, element effects of on, 3838613
mass moments of, 25-28
parallel-axis theorem for, 25
rotary, 27/—28
vibration solation and elements of, 238
vibratory systems, elements of, 24-28
Inertia-dominated region, 201-202, 204
Inertia elements, 24-28
Inertia matrix, 333
Inertial reference frame. 7
Inverse of a matnix, see Matrices
Initial conditions, 442447, 475-48()
Laplace transform approach and, 475-480
normal-mode approach and, 442-447
Initial displacement, 134161
free responses and, 154-161
initial velocity and, 158-161
logarithmic decrement, 154-158
stale-space plots, 154-155, 159-161
Initial-value problem, _1is
Initial velocity, 136=153, 158161, 287-288
displacement response, 136—137
energy dissipation, 138-139
extrema of responses, 136137
force transmitted to a fixed surface, 138
free response and, 136153, 158-161
impulse excilation response similarity to, 287/-288
initial displacement and, 158-161
state-space plots, 138139, 159-161
velocity response, 137
Input-outpot relationship, 292
Instability, 161
Inverse Fourler transform, 215
Inverse of a matrix, 677
Inverted pendulum, see Pendulum
Inverse problem, 388

K
Kelvin-Voigt model, 145
Kmematics, 4-13, 410413

dynamics and, 4-13
particles, 4-6
rigid-bodies, 67
rotating shafts and, 410413
Kinetic energy, 18, 26-27, 410413, 546
heams, 546
inertia and, 2627
multiple degree-of-frecdom systems, 352-333
rigid body, 18
rotating shafts and, 410-413
single degree-of-freedom systems, 93
system of particles, 18
waork and energy formulas for, 18
Kronecker delta function, 443

L.
Lagrange’s equations, 93116, 351-369, 413419
seneralized, 93-94
multiple degree-of-freedom systems, 351-369,
413419
rotating shafts, 413419
single degree-of-freedom systems, Y3116
two degree-of-freedom system, 353-355
Lagrangian of the system, 548-350
Lamppost parameters, 209-301)
Laplace translorm, 127128, 436437, 471481,
653659, 663668
differential equations and, 663663
evaluation of, 653-657
impulse excitation and, 474
initial conditions, response to, 475480
multiple degree-of-freedom systems, approach for,
436437, 471481
pairs, 633, 635-657
partial fractions and, 657639
single degree-of-freedom systems, method for, 127128
step input response and, 474475
two degree- of-freedom systems, 471473
Lavrov's device, 362-364
Lightly damped systems, 3949, 40344
Linear momentum, 15, 351
absolute, 70
Linear systems, 31-34, 79, 9407 168-170, 276-277,
345-348, 352-353, 496-507
amplitude response for, 276-277, 499504
soverning equations for, 79, 9497, 345-351, 352-353
Lagrange’s equations for, D4-97, 352-353
multiple degree-of-freedom systems, 345-351,
352-353, 496507
single degree-of-freedom systems, 79, 9497, 168-170,
216277
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static-equilibrium positions and, 79, 345-348
vibration absorber, 496507

Linearization, 345-346, 360

Logarithmic decrement, 154-158

Low pass filters, 210

Lumped parameter model, see Discrele systems

M
Machine tool chatter, see Chatter
Manometer, 45
Mass moments ol inertia, 25-28
MATLAR, 43
Matrices, 333, 371, 379, 395396, 404, 466467, 675678
addition and subtraction of, 676
damping. 353, 404
eizenvalues of, 678
equality of, 676
wdentity, 676
inertia, 353
inverse, 677
maodal, 371, 379, 395-396
multiplication of, 677
null, 676
row, 676
state-space, 406467
stiffness, 353
symmetric,
types of, 675-676
Maxwell model, 147-153
Mean-square value, 521
Mechanicul impedance, 218
Mechanical filter,
Microelectromechanical systems (MEMS), 3940, 55-56,
107109, 4914494
amplitude response of, 4914494
filter, 491494
Lagrange formulation for, 107109
model, 35-56
stiffness of, 3940
Milling system, 462463
Mobality, 218
Maodal
amplitudes, 634
analysis, 36, 218
coordinates, 435440
mass, 33-396
matrix, 371, 379, 395396
stiffness, 395-3496
Mode shapes, 369398, 562-632, 633-636, 683-602
asymmetric, 3785749
hars, 63642

Index 707

baseball bat, 630631
beams, 562632, 633-636
cigenvalues and, 370-371
eigenvectors, linear independence of, 396-397
Forced oscillations, 633636
free ascillations, 562-632
free responses of, 369-308
natural frequencies and, 369-3493, 566-574
node point for, 387, 577-579
nondimensional parameters of, 375-370
normalization of, 371-372, 396
orthogonahity of, 393394, 307-308, 56653649, 595596
properties of, 393308
rigid-body, 379-380, 581
shafts, 683642
strain, 379580
strings, 683602
symmetric, 378-579
Models, 2367, 147-153, 468471
constant modal damping, 468-471
construction of, 534-60
continuous (distributed-parameter) systems, 33
culling process, 39-60
degree-of-freedom for, 54-56
discrete (lumped-parameter) systems, 54-55
human body, 35358
Maxwell, 147-153
micreclectromechanical systems, 39—, 35-56
ski, 58
Moment-balance methods, 76-T9, 340-344
multiple degree-of-freedom svstems, 340-344
single degree-of-freedom systems, 76-79
static-equilibrium position, 78-79
Motion, equations of, B5-86, 93-1 16, 344348, 35]-369,
d17-41%, 5435062, See also Governing equations
beams, 543-562
exlended Hamilton’s principle for, 543, 550-354
Lagrange’s, 93-116, 351-3649, 417419
multiple degree-ofl-Treedom systems, 344348,
351-369, 417419
single degree-of-freedom systems, 85-86, 93-1 16
Moving bases, systems with, 330-5333
Moving load on beams, 646048
Multiple degree-of-freedom systems, 336-539
conservation of energy, 408
forced oscillations, 434-539
free oscillations, 443447, 478480
free response of, 369409
frequency-response functions for, 448458, 4814495
governing equations for, 338-369
Kinetic energy, 352
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708 Index

Multiple degree-of-freedom syslems (continued )
Laplace transtorm approach for, 436437, 471481
linearization, 360
mode shapes, 369—4(7
moving bases, 530-535
normal-mode approach for, 436—4358
potential energy, 332
rotating shafts, 409410
stablity of, 419422
stale-space formulation for, 436437, 458471
transfer functions for, 481493
uncoupled, 340, 439440
vibration absorbers, 4533456, 495-525
vibration isolation, 525-520

M
N degree-or-freedom system. see Multiple degree-ofl-
Treedom

Natural frequency, 79-86, 95-06, 98, 100-101, 369-393,

362632, 683692
axial force effects on, 625-628
bars, 6836492
heams, 562-632
conslant, 82—-83
elastic foundations of beams and, 625-626
free oscillations and, 80, 562-632
free responses and, 369-303
mode shapes and, 369-393, 566-574
multiple degrec-of-freedom systems, 369-393
nonlinear springs, 82-83, 84
period of free oscillations, 80
rotational vibrations, 80
shalts, 683692
single degree-of-freedom sysiems, 79-86, Y546,
100-101
strings, 683692
Matural systems, 94, 352
MNeutral axis, 544
Newtonian mechanics, 15-17
Mewlon's laws of motion, 16
Node point, 387, 577-379
two degree-of-freedom system, 387
beam, 378579
Nonconservative systems, 353-554
Nonlinear elements, 4245, 82-83, 84, 168173,
269-277. See also Pendulum systems;
Slider mechanisms: Spring syslems
cubic, 44435, 168, 269-273
damping (dissipation), 171-173
stiffness, 4243, 168170, 269-277
Normal-mode approach, 436458

damped system response, 441, 445446
frequency-response function and, 448458
harmonic forcing, response o, 4458458
initial conditions, response to, 442447
proportionally damped system response, 451452
undamped system response, 441442, 4464351,
453-455
Mormalization ol mode shapes, 371-372, 396
Null matrix, 676

()
Orthogonal functions, 366, 569
Orthogonal property, 567-560
Orthogonality of modes, 393-394, 307-308, 566-560,
Y3246
Oscillations, 2, 111113, 115-116, 355356, 362-364,
370380, 4345349, 562048, See also Forced
oscillations: Free oscillations
beams, 562648
soverning equations for, 111=113, 115=116, 355-356,
362-364, 632-633
mode shapes for, 562-632, 633636
multiple degree-of-freedom systems, 355-356,
362-364, 379-380, 434-533Y
normal-mode approach for, 436-458
rigid-body mode of, 379-380
single degree-of-freedom systems, 111-113, 115-116
Overdamped, 130
Overshoot, see Percentage overshoot

P
Parallel-axis theorem, 25
Yarallel-plate damper, 30-51
Partial fractions, 657659
Particle impact damper, 317-325
Particles, 4-6, 15-17
Pass band
filters, 210
ripple, 491
Pendulum systems, 47—4%, O9—101, 163164, 358360,
382-385, 507510, 513-517
absorber, 358-360, 513517
asymptotic stahility of, 163-164
centrifugal vibration absorber, 307-511)
governing equations for, 99-101, 353-360, 307-5049,
514
inverted, 99-101, 163-164
linearization of, 509-510, 515
mode shapes of, 382-385
multiple degree-of-freedom, 3535360, 382-353,
aT=510, 313517
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natural frequency of, 382-385
potential energy elements of, 47—
single degree-of-freedom, 99-101, 163-164
stabality of, 163

Percentage overshoot, 303304, 305

Periodic excitations, | 80283
acceleration measurements of, 235-238
base excitations, 225-235, 238, 265-269
energy dissipation of, 2442355
external force of, 182183
foreed responses from, 180-283
frequency-response function, 204213
harmonic excitations, 183-204, 235269
nonlinear stiffness and, 269-277
rolating systems with unbalanced mass, 218225
vibration isolation of, 238-244

Periodic impulses, forced responses to, 264-265

Periodic pulse train, 260-264

Phase portrait, see State-space plot

Phase relationships, 198-204, 221-225, 227-230
base excitation and, 227-230
damping-dominated region, 200-201, 204

excitation frequency and, 198204, 221-225, 227-230

harmonic excitation and, 198-204
inertia-dominated region, 201-202, 204
rotating systems with unbalanced mass, 221-225
stiffness-dominated region, 199204, 204
Phase response, 185
Polar coordinates, 680681
Potential energy, 29-30, 45-49, 346
Principal coordinates, see Modal coordinates
Proportionally damped systems, 399403, 451152,
464467
free responses of, 399403
normal-mode approach for, 431452
state-space formulation tor, 464467
Pulse responses, 260-264, 317-332
half-sine wave, 322-332
periodic pulse train, 260-264
rectangular, 317-321

Q
Quadratic nonlinearity, 75
Quality factor, 166, 212--214

R

Radivs of curvature, 544
Railway car, 379

Ramp input responses, 310-316
Rate gyroscopes, 347349, 364
Rayleigh dissipation function, 93
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Index 709

Receplance, 217-218
Rectangular pulse excitation response, 317-321
Reduction in transmissibility, 240
Reference Trame,
inertial, 7
rotating, 10
Resonance, 197, 449
Rigid-body mode, 379-380, 581
Rise time, 302-303, 303
Rocking maotion, 101103
Root locus diagrams, 162-163
Rotary inertia, 24-25, 27-28
Rotating unbalance, Y0-0]
Rotational systems, 26-27, 80, 85, 90-02 9798
105107, 115-116, 218-225, 360-362, 409419,
See also Shafts
acceleration responses of, 220-221
bell and clapper, 360-362
disks, 26-27, 97-98, 105-107
extended mass of, [05-107
Hexible supports, on, 409-419
forced responses of, 218-225
governing equations for, 90-92, 97-98, 1051104,
116117, 360-362
mass moment of inertia of, 26-27
multiple degree-of-freedom, 360-362, 409-419
natural frequency of, 80
oscillations of, 115-116
periodic excitations of, 218225
phase responses of, 221-225
single degree-of-freedom, 80, 85, 90-92, 9708,
105107, 115-116, 218-225
translation and. 97-98, 105=-107
unbalanced mass, with an, 9092 218-225
velocity responses of, 220221
Row matrix, 676

5

Saw-tooth forcing function, 260-264

sell-adjoint syslems, 564

Sensitivity, 208

sensors, 387, 579

settling time, 3043005

Shafts, 409419, 683-692
boundary conditions for, 686
kinematics and, 410-413
kinetic energy and, 410-413
Lagrange’s equations for, 413-419
mode shapes of, 683-692
natural frequencies of, 6836492
rotating on flexible supports, 409419



710 Index

Single degree-of-treedom systems, 55-56, 68-335,
I0-592, 602623
acceleration measurements of, 235-238
attached to beams, 390-592, 602-625
damping factor of, 83, 85-88, 05-96, 08, 100-101,
157-158
energy dissipation of, 244-255
force-balance methods for, 70-76
forced responses of, 180283
free responses of, 126179
frequency-response functions for, 204-218, 29]1-292
governing equations for, 68-125
Lagrange’s equations for, 93-116
momeni-balance methods for, 76-79
natural frequency of, 79-83, 84, 8536, 95-96, 935,
100101
nonlinear elements of, 168173, 269-277
periodic excitalions of, 180283
rotating machines, 218-225
stability of, 161-164
transient excitations of, 284-335
vibration 1solation of, 238-244
vibration modeling and, 54-56
Skew-symmetric matrix, 348, 675-676
Ski model, 58
Slider mechanisms, 28, (09111, 265-269, 510-513
bar-, 310-313
base excitation of, 265-264
crank-, 265-269
equation of motion for, 109111
rotary inertia for, 28
vibration absorber, 510-513
Softening springs, 42
Spectral energy of responses, 316-317
Spring constants, 315
table of, 35-36
Spring systems, 20-34, 42-45, 82-83, 84, 103105,
168170, 380381, 584386
beam attachments, 584-586, 589-590), 392
combinations of, 32-34
cubic, 4445, 168
governing eguations for, 103105
hardening, 42, 168
linear, 31-34, 168170
mode shapes of, 380-381
multiple degree-of-freedom, 380351
natural frequency of, 82-83, 84, 104105, 380-38]
nonlinear, 42-45, 82-83, 84
piecewise linear, 168170
single degree-of-freedom, 103105, 168-170
softening, 42

torsion, 31
translation, 31, 103-103, 584-586, S89-590, 592
Square matrix, 675, 677-678
Stability of systems, 161-164, 419422
asymptotic, [63-164
gyroscopic forces and, 419420
multiple degree-of-freedom, 419422
roct locus diagrams for, 162-163
single degree-of-freedom, 161-164
wind-induced vibrations and, 420-422
State vector, 439
State-space formulation, 436437, 458471, 669-671,
673674
arbitrarily damped systems, 469-471
complex harmonic excitation and, 673-674
constant modal damping model and, 468471
dilferential equations and, 669671, 673674
eigenvalue problem and, 464—467
proportionally damped systems, 464467
alale-space matrix, 466467
State-space plots, 138-139, 154-155, 1539-161
atatic displacement, 71-72
Static-equilibrium positions, 72-76, 78-70, 345-3485,
360
linear systems governing small oscillations about, 749,
345-348
multiple degree-of-freedom systems, 345348,
360
single degree-of-freedom systems, 72-76, 7874
Steady-state response, 184185
Slep inpul responses, 300-310, 474475
Laplace transform for, 474475
percentage overshoot, 303-304, 305
rise time, 302-303, 305
seftling time, 304-305
Atiffness elements, 2819, 165173, 269-277, 393396,
288-613
beam interiors, effects of, 388613
compressed gas, 46-47
cutting, 165-167
fluids, 4546
force of magnitude (F), 29-30
eravity loading, 43449
machine tool chatter and, 165167
modal, 3U5-3496
multiple degree-of-freedom systems, 395-306
nonlinear systems, 168—173, 260-277
nonlinear springs, 42—43, 165170
potential energy and, 29-30, 45-40
single degree-of freedom systems, 163173,
269-277
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spring constants, 31-45
structural, 34—42
Stiffness-dominated region, 199-200, 204
Stiffness matrix, 353
Strain-mode shapes, 379-380
Strings, vibration of, 683-602
Structural damping, 54, 89, 248-252, 400491
energy dissipation, 248-252
equivalent viscous damping, 248-240
forced system response with, 249-2351
[requency-response funclions Tor, 490-49
governing equation with, 89
periodic excitations and, 248232
viscoelastic materials and, 251-252
Structural elements, spring constants for, 3442
Superposition principle, 256
Symmetric matrix, 340, 675
aymmelric mode shapes, 578-579
Synchronous whirl, 417
System identification, 36, 205-207

T

Tapered beams, 627-632

Torsion springs, 31

Transter function, 214-217, 291-292, 481493

frequency-response function and, 214-217, 481495

impulse excitation and, 291-292
miultiple degree-of-freedom systems, 451405
single degree-of-freedom systems, 214217,
201202
Transient excilations, 284-335
half-sine wave pulse, 322-332
impact testing, 332-333
impulse excitation, 287300
ramp input, 310-316
rectangular pulse, 317-321
spectral energy of, 316-317
step input, 300-310
Transient response, 184-186, 644045
Transmissibility ratio, 239-244  525-529
Transverse vibrations of beams, 689-692

Two degree-of-freedom system, 353-355, 443447,

4544535, 471473
har-slider svstem, 310313
bounce and pitch, 343
centrifugal pendulum, 507-310
Iree oscillations of, 443447
harmonic forcing, response to, 434435
Lagrange's equations for, 353-335
Laplace transform approach for, 471473
pendulum absorber, 513-517

Index

U
Unbalanced rotating mass, see Rotating unbalance

711

Undamped systems, 132, 196198, 369-308, 44]|-451,

453455, 465466, 637-H38

eigenvalue problems for, 370-373, 375-370, 465466

forced responses of, 196198, 637638

free responses of, 132, 368398, 443444 446447
frequency-response Tunction and, 448451, 453455

harmonic forcing, response to, 196198, 448451,

453-455
initial conditions and, 446447
mode shapes of, 369-308
multiple degree-of-freedom, 369398, 441451,
453455
natural frequency of, 369-393
normal-mode approach for, 441451, 453455
resonance of, 197, 449
single degree-of-freedom, 132, 196198
slate-space matrix for, 465466
vibration absorber, 453455
Underdamped system, 129
Unforced systems. instability of, 161-163
LInit impulse, 291
Units, table of, 24
Unit step function, 184
Unit vectors, 5
UInstable systems. 161-163

"n‘
Velocity, 6-7, 137, 220221, 226-227
absolute, 67
responses, 137, 220-221, 226-227
vector, 349
Velocity-squared damping, see Fluid damping
Yertical vibrations, force-balance methods for,
T1-72
Vibration, 1-21, 683-602
dynamics and, 4-19
general solutions for, 68306092
kKinemaltics and, 4-13
transverse, H39-6HY2
work and energy of, [B-19
Vibration absorbers, 453456, 495-5325
amplitude response of, 499504
bar slider system for, 510-513
centrifugal pendulum, 507-510
designs of, 304-507
diesel engine, 455456
linear, 496-507
normal-mode approaches for, 453435
particle impact damper, 517-525
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712 Index

Vibration absorbers (continued ) equivalent viscous damping, 245-246, 249
pendulum, 513-517 force-displacement curves for, 252-233
undamped, 433135 periodic excitations and, 245-2446, 249, 252-253

Vibration isolation, 238-244, 525-529
base excitation, systems with, 238 W
multiple degree-ot-freedom systems, 325-520 Whole-body vibration, 57
reduction in transmissibility, 240 Whirling, see Shafis
single degree-of-freedom systems, 238-244 Wind-induced vibrations, 420422
ransmissibility ratio for, 239-244, 525-529 Work, 18-19, 547-548

Viscoelastic bodies, collision of, 145-146 Work-energy theorem, 18-19

Viscous damping, 5052, 171-172, 245-246, 249,

232208 Z
energy dissipation by, 245-246, 249, 252-253 Zeros of the forced response, 450
Obras protegidas por direitos de autol
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