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Introduction

1.1 What Is Artificial Intelligence?

The term artificial intelligence stirs emotions, For one thing there is our fascination
with intelligence, which seemingly imparts to us humans a special place among
life forms. Questions arise such as “What is intelligence’?”, "How can one measure
intelligence?” or “How does the brain work?’. All these questions are meaningful
when trying to understand artificial intelligence. However, the central question for
the engineer, especially for the computer scientist, is the question of the intelligent
machine that behaves like a person, showing intelligent behavior.

The attribute artificial might awaken much different associations. It brings up
fears of intelligent cyborgs. It recalls images from science fiction novels. It raises
the question of whether our highest good, the soul, is something we should try to
understand, model, or even reconstruct,

With such different offhand interpretations, it becomes difficult to define the term
artificial intelligence or Al simply and robustly. Nevertheless 1 would like to try,
using examples and historical definitions, to characterize the field of AL In 1955,
John McCarthy, one of the pioneers of Al, was the first to define the term arfificial
intelligence, roughly as follows:

The goal of Al 1s 1o develop machines that behave as though they were intelligent.

To test this definition, the reader might imagine the following scenario. Fif-
teen or s0 small robotic vehicles are moving on an enclosed four by four meter
square surface. One can observe various behavior patterns. Some vehicles form
small groups with relatively little movement. Others move peacefully through the
space and gracefully avoid any collision. Still others appear to follow a leader. Ag-
gressive behaviors are also observable. Is what we are seeing intelligent behavior?

According to McCarthy’s definition the aforementioned robots can be described
as intelligent. The psychologist Valentin Braitenberg has shown that this seemingly
complex behavior can be produced by very simple electrical circuits [Bras4]. So-
called Braitenberg vehicles have two wheels, each of which is driven by an inde-
pendent electric motor. The speed of each motor is influenced by a light sensor on

W. Ertel, Introduction to Artificial Intelligence, 1
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-299-5_1, © Springer-Verlag London Limited 2011



2 1 Introduction

Fig. 1.1 Two very simple ==
Braitenberg vehicles and their :
reactions to a hight source

- B —\ . Al

the front of the vehicle as shown in Fig. 1.1. The more light that hits the sensor,
the faster the motor runs. Vehicle | in the left part of the figure, according to its
configuration, moves away from a point light source. Vehicle 2 on the other hand
moves toward the light source. Further small modifications can create other behav-
ior patterns, such that with these very simple vehicles we can realize the impressive
behavior described above,

Clearly the above definition 15 insufficient because Al has the goal of solving
difficult practical problems which are surely too demanding for the Braitenberg ve-
hicle. In the Encyclopedia Britannica [Bri9%1] one finds a Definition that goes like:

Al is the ability of digital computers or computer controlled robots to solve problems that
are normally associated with the higher intellectual processing capabilities of humans . . .

But this definition also has weaknesses. It would admit for example that a com-
puter with large memory that can save a long text and retrieve it on demand displays
intelligent capabilities, for memorization of long texts can certainly be considered
a higher intellectual processing capability of humans, as can for example the quick
multiplication of two 20-digit numbers. According to this definition, then, every
computer is an Al system. This dilemma is solved elegantly by the following defi-
nition by Elaine Rich [Ric83]:

Artificial Intelligence is the study of how to make computers do things at which, at the
moment, people are better,

Rich, tersely and concisely, characterizes what Al researchers have been doing for
the last 50 years. Even in the year 2050, this definition will be up to date.

Tasks such as the execution of many computations in a short amount of time
are the strong points of digital computers. In this regard they outperform humans by
many multiples. In many other areas, however, humans are far superior to machines.
For instance, a person entering an unfamiliar room will recognize the surroundings
within fractions of a second and, if necessary, just as swiftly make decisions and plan
actions. To date, this task is too demanding for autonomous' robots. According to
Rich’s definition, this is therefore a task for Al In fact, research on autonomous
robots is an important, current theme in Al. Construction of chess computers, on
the other hand, has lost relevance because they already play at or above the level of
grandmasters.

It would be dangerous, however, to conclude from Rich’s definition that Al is
only concerned with the pragmatic implementation of intelligent processes. Intelli-
gent systems, in the sense of Rich’s definition, cannot be built without a deep un-

' An autonomous robot works independently, without manual support, in particular without remote
control,



1.1 What Is Artificial Intelligence? 3

derstanding of human reasoning and intelligent action in general, because of which
neuroscience (see Sect. 1.1.1) is of great importance to Al This also shows that the
other cited definitions reflect important aspects of Al

A particular strength of human intelligence is adaptivity. We are capable of ad-
justing to various environmental conditions and change our behavior accordingly
through learning. Precisely because our learning ability 1s so vastly superior to that
of computers, machine learning is, according to Rich’s definition, a central subfield
of Al

1.1.1 Brain Science and Problem Solving

Through research of intelligent systems we can try to understand how the human
brain works and then model or simulate it on the computer. Many ideas and princi-
ples in the field of neural networks (see Chap. ) stem from brain science with the
related field of neuroscience.

A very different approach results from taking a goal-oriented line of action, start-
ing from a problem and trying to find the most optimal solution. How humans solve
the problem is treated as unimportant here. The method, in this approach, is sec-
ondary. First and foremost is the optimal intelligent solution to the problem. Rather
than employing a fixed method (such as, for example, predicate logic) Al has as its
constant goal the creation of intelligent agents for as many different tasks as pos-
sible. Because the tasks may be very different, it is unsurprising that the methods
currently employed in Al are often also quite different. Similar to medicine, which
encompasses many different, often life-saving diagnostic and therapy procedures,
Al also offers a broad palette of effective solutions for widely varying applications.
For mental inspiration, consider Fig. 1.2 on page 4. Just as in medicine, there is no
universal method for all application areas of Al rather a great number of possible
solutions for the great number of various everyday problems, big and small.

Cognitive science 1s devoted to research into human thinking at a somewhat
higher level. Similarly to brain science, this field furnishes practical Al with many
important ideas. On the other hand, algorithms and implementations lead to fur-
ther important conclusions about how human reasoning functions. Thus these three
elds benefit from a fruitful interdisciplinary exchange. The subject of this book,
however, is primarily problem-oriented Al as a subdiscipline of computer science.

There are many interesting philosophical questions surrounding intelligence and
artificial intelligence. We humans have consciousness; that is, we can think about
ourselves and even ponder that we are able to think about ourselves. How does
consciousness come to be? Many philosophers and neurologists now believe that the
mind and consciousness are linked with matter, that is, with the brain. The question
of whether machines could one day have a mind or consciousness could at some
point in the future become relevant, The mind-body problem in particular concerns
whether or not the mind is bound to the body. We will not discuss these questions
here. The interested reader may consult [SpeYs, SpeY7] and is invited, in the course
of Al technology studies, to form a personal opinion about these questions.
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Fig. 1.2 A small sample of the solutions offered by Al

1.1.2 The Turing Test and Chatterbots

Alan Turing made a name for himself as an early pioneer of Al with his definition
of an intelligent machine, in which the machine in guestion must pass the following

test. The test person Alice sits in a locked room with two computer terminals,

One

terminal is connected to a machine, the other with a non-malicious person Bob.
Alice can type questions into both terminals. She is given the task of deciding, after
five minutes, which terminal belongs to the machine. The machine passes the test if

it can trick Alice at least 30% of the time [Tur50].
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While the test is very interesting philosophically, for practical Al, which deals
with problem solving, it is not a very relevant test. The reasons for this are similar to
those mentioned above related to Braitenberg vehicles (see Exercise 1.3 on page 14).

The Al pioneer and social critic Joseph Weizenbaum developed a program named
Eliza, which is meant to answer a test subject’s questions like a human psycholo-
eist [Weib6]. He was in fact able to demonstrate success in many cases. Supposedly
his secretary often had long discussions with the program. Today in the internet there
are many so-called chatferbots, some of whose initial responses are quite impres-
sive. After a certain amount of time, however, their artificial nature becomes appar-
ent. Some of these programs are actually capable of learning, while others possess
extraordinary knowledge of various subjects, for example geography or software
development. There are already commercial applications for chatterbots in online
customer support and there may be others in the field of e-learning. It 1s conceivable
that the learner and the e-learning system could communicate through a chatterbot.
The reader may wish to compare several chatterbots and evaluate their intelligence
in Exercise 1.1 on page 14.

1.2  The History of Al

Al draws upon many past scientific achievements which are not mentioned here, for
Al as a science in its own right has only existed since the middle of the Twentieth
Century. Table 1.1 on page 10, with the most important Al milestones, and a graph-
ical representation of the main movements of Al in Fig. 1.3 on page 6 complement
the following text.

1.2.1 The First Beginnings

In the 1930s Kurt Godel, Alonso Church, and Alan Turing laid important founda-
tions for logic and theoretical computer science. Of particular interest for Al are
(odel’s theorems. The completeness theorem states that first-order predicate logic
15 complete. This means that every true statement that can be formulated in predi-
cate logic is provable using the rules of a formal calculus. On this basis, automatic
theorem provers could later be constructed as implementations of formal calculi.
With the incompleteness theorem, Gddel showed that in higher-order logics there
exist true statements that are unp1'n:_1‘l.f'::1|:snl|.:.l With this he uncovered painful limits of
formal systems,

Alan Turing’s proof of the undecidability of the halting problem also falls into
this time period. He showed that there is no program that can decide whether a
given arbitrary program (and its respective input) will run in an infinite loop. With

*Higher-order logics are extensions of predicate logic, in which not only variables, but also func-
tion symbols or predicates can appear as terms in a quantification. Indeed, Gidel only showed that
any system that 1s based on predicate logic and can formulate Peano arithmetic 1s incomplete,
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this Turing also identified a limit for intelligent programs. It follows, for example,
that there will never be a universal program verification sy.t;lem.J‘

In the 1940s, based on results from neuroscience, McCulloch, Pitts and Hebb
designed the first mathematical models of neural networks. However, computers at
that time lacked sufficient power to simulate simple brains.

1.2.2 Logic Solves (Almost) All Problems

Al as a practical science of thought mechanization could of course only begin once
there were programmable computers. This was the case in the 1950s. Newell and
Simon introduced Logic Theorist, the first automatic theorem prover, and thus also
showed that with computers, which actually only work with numbers, one can also
process symbols. At the same time McCarthy introduced, with the language LISP,
a programming language specially created for the processing of symbolic structures.
Both of these systems were introduced in 1956 at the historic Dartmouth Confer-
ence, which is considered the birthday of AL

In the US, LISP developed into the most important tool for the implementation
of symbol-processing Al systems. Thereafter the logical inference rule known as
resolution developed into a complete calculus for predicate logic.

*This statement applies to “total correctness”, which implies a proof of correct execution as well
as a prood of termination for every valid inpult.
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In the 1970s the logic programming language PROLOG was introduced as the
European counterpart to LISP. PROLOG offers the advantage of allowing direct
programming using Horn clauses, a subset of predicate logic. Like LISP, PROLOG
has data types for convenient processing of lists.

Until well into the 1980s, a breakthrough spirit dominated Al, especially among
many logicians. The reason for this was the string of impressive achievements in
symbol processing. With the Fifth Generation Computer Systems project in Japan
and the ESPRIT program in Europe, heavy investment went into the construction of
intelligent computers.

For small problems, automatic provers and other symbol-processing systems
sometimes worked very well. The combinatorial explosion of the search space, how-
ever, defined a very narrow window for these successes. This phase of Al was de-
scribed in [RIN10] as the “Look, Ma, no hands!™ era,

Because the economic success of Al systems fell short of expectations, funding
for logic-based Al research in the United States fell dramatically during the 1980s.

1.2.3 The New Connectionism

During this phase of disillusionment, compulter scientists, physicists, and Cognitive
scientists were able to show, using computers which were now sufficiently pow-
erful, that mathematically modeled neural networks are capable of learning using
training examples, to perform tasks which previously required costly programming,.
Because ol the fault-tolerance of such systems and their ability to recognize pat-
terns, considerable successes became possible, especially in pattern recognition.
Facial recognition in photos and handwriting recognition are two example appli-
cations. The system Nettalk was able to learn speech from example texts [SRB6].
Under the name connectionism, a new subdiscipline of Al was borm.

Connectionism boomed and the subsidies flowed. But soon even here feasibility
limits became obvious. The neural networks could acquire impressive capabilities,
but it was usually not possible to capture the learned concept in simple formulas or
logical rules. Attempts to combine neural nets with logical rules or the knowledge
of human experts met with great difficulties. Additionally, no satisfactory solution
to the structuring and modularization of the networks was found.

1.2.4 Reasoning Under Uncertainty

Al as a practical, goal-driven science searched for a way out of this crisis. One
wished to unite logic’s ability to explicitly represent knowledge with neural net-
works” strength in handling uncertainty. Several alternatives were suggested.

The most promising, probabilistic reasoning, works with conditional probabili-
ties for propositional calculus formulas. Since then many diagnostic and expert sys-
tems have been built for problems of everyday reasoning using Bavesian networks.
The success of Bayesian networks stems from their intuitive comprehensibility, the
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clean semantics of conditional probability, and from the centuries-old, mathemati-
cally grounded probability theory.

The weaknesses of logic, which can only work with two truth values, can be
solved by fuzzy logic, which pragmatically introduces infinitely many values be-
tween zero and one. Though even today its theoretical foundation is not totally finmn,
it is being successfully utilized, especially in control engineering,

A much different path led to the successful synthesis of logic and neural networks
under the name hvbrid systems. For example, neural networks were employed to
learn heuristics for reduction of the huge combinatorial search space in prool dis-
covery [SES(].

Methods of decision tree learning from data also work with probabilities. Sys-
tems like CART, 1D3 and C4.5 can quickly and automatically build very accurate
decision trees which can represent propositional logic concepts and then be used
as expert systems. Today they are a favorite among machine learning technigues
(Sect. 8.4).

Since about 1990, data mining has developed as a subdiscipline of Al in the area
of statistical data analysis for extraction of knowledge from large databases. Data
mining brings no new techniques to Al, rather it introduces the requirement of us-
ing large databases to gain explicit knowledge. One application with great market
potential is steering ad campaigns of big businesses based on analysis of many mil-
lions of purchases by their customers. Typically, machine learning technigues such
as decision tree learning come into play here.

1.2.5 Distributed, Autonomous and Learning Agents

Distributed artificial intelligence, DAI, has been an active area research since about
1985, One of its goals is the use of parallel computers to increase the efficiency
of problem solvers. It turned out, however, that because of the high computational
complexity of most problems, the use of “intelligent”™ systems is more beneficial
than parallelization itself.

A very different conceptual approach results from the development of au-
tonomous software agents and robots that are meant to cooperate like human teams.
As with the aforementioned Braitenberg vehicles, there are many cases in which
an individual agent is not capable of solving a problem, even with unlimited re-
sources. Only the cooperation of many agents leads to the intelligent behavior or to
the solution of a problem. An ant colony or a termite colony is capable of erecting
buildings of very high architectural complexity, despite the fact that no single ant
comprehends how the whole thing fits together. This is similar to the situation of
provisioning bread for a large city like New York [RN10]. There is no central plan-
ning agency for bread, rather there are hundreds of bakers that know their respective
areas of the city and bake the appropriate amount ol bread at those locations.

Active skill acquisition by robots is an exciting area of current research. There
are robots today, for example, that independently learn to walk or to perform various
motorskills related to soccer (Chap. 10). Cooperative learning of multiple robots to
solve problems together is still in its infancy.
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1.2.6 Al Grows up

The above systems offered by Al today are not a universal recipe, but a workshop
with a manageable number of tools for very different tasks. Most of these tools
are well-developed and are available as finished software libraries, often with con-
venient user interfaces. The selection of the right tool and its sensible use in each
individual case is left to the Al developer or knowledge engineer. Like any other
artisanship, this requires a solid education, which this book 15 meant to promote.

More than nearly any other science, Al is interdisciplinary, for it draws upon
interesting discoveries from such diverse fields as logic, operations research, statis-
tics, control engineering, image processing, linguistics, philosophy, psychology, and
neurobiology. On top of that, there is the subject area of the particular application.
To successfully develop an Al project is therefore not always so simple, but almost
always extremely exciting.

1.3 Agents

Although the term intelligent agents is not new to Al, only in recent years has it
gained prominence through [RN10], among others. Agent denotes rather generally
a system that processes information and produces an output from an input. These
agents may be classified in many different ways.

In classical computer science, software agenls are primarily employed (Fig. 1.4
on page 11). In this case the agent consists of a program that calculates a result from
user input.

In robotics, on the other hand, hardware agents (also called robots) are employed,
which additionally have sensors and actuators at their disposal (Fig. 1.5 on page 11).
The agent can perceive its environment with the sensors. With the actuators it carries
out actions and changes its environment.

With respect to the intelligence of the agent, there is a distinction between reflex
agents, which only react to input, and agents with memory, which can also include
the past in their decisions. For example, a driving robot that through its sensors
knows its exact position (and the time) has no way, as a reflex agent, of determining
its velocity. If, however, it saves the position, at short, discrete time steps, it can thus
easily calculate its average velocity in the previous time interval,

If a reflex agent is controlled by a deterministic program, it represents a function
of the set of all inputs to the set of all outputs. An agent with memory, on the other
hand, 18 In general not a function. Why? (See Exercise 1.5 on page 14.) Reflex agents
are sufficient in cases where the problem to be solved involves a Markov decision
process. This 1s a process in which only the current state is needed to determine the
optimal next action (see Chap. 10).

A mobile robot which should move from room 112 to room 179 in a building
takes actions different from those of a robot that should move to room 105, In other
words, the actions depend on the goal. Such agents are called goal-based.
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Table 1.1 Milestones in the development of Al from Gdadel to today

1931

1937

1943

1950

1951

1955

1956

1958

1959
1961

1963
1965
1966

1969

1972

1976

1981

1982

1986

1990

1992

1993

The Austrian Kurt Godel shows that in first-order predicate logic all true statements
are derivable [God31al. In higher-order logics, on the other hand, there are true
statements that are unprovable [Gad31b]. (In [Gad31b] Gédel showed that predicate
logic extended with the axioms of arithmetic is incomplete. )

Alan Turing points out the limits of intelligent machines with the halting

problem [Tur37].

McCulloch and Pitts model newral networks and make the connection to propositional
logic.

Alan Turing defines machine intelligence with the Turing fest and writes about
learning machines and genetic algorithms [Tur30].

Marvin Minsky develops a neural network machine. With 3000 vacuum tubes he
simulates 40 neurons.

Arthur Samuel (IBM) builds a learning chess program that plays better than its
developer [Sam3Y].

McCarthy organizes a conference in Dantmouth College. Here the name Artificial
Intelligence was lirst introduced.

Newell and Simon of Carmegie Mellon University (CMU) present the Logic Theorisi,
the first symbol-processing computer program [NS583].

McCarthy invents at MIT (Massachusetts Institute of Technology ) the high-level
language LISP. He writes programs that are capable of modifying themselves.
Gelernter (IBM) builds the Geometry Theorem Prover,

The General Problem Solver (GPS) by Newell and Simon imitates human
thought [NS61].

McCarthy founds the Al Lab at Stanford University.

Robinson invents the resolution calculus for predicate logic [Rob65] (Sect. 3.5).
Welzenbaum’s program LEliza carries out dialog with people in natural

language |Weib6| (Sect. 1.1.2).

Minsky and Papert show in their book Perceprrons that the perceptron, a very simple
neural network. can only represent linear functions [MP69] (Sect. 1.1.2).

French scientist Alain Colmerauer invents the logic programming language PROLOG
(Chap. 3).

British physician de Dombal develops an expert system for diagnosis of acute
abdominal pain [dDLS " 72]. It goes unnoticed in the mainstream Al community of
the time (Sect. 7.3).

Shortliffe and Buchanan develop MY CIN, an expert system for diagnosis of
infectious diseases, which is capable ol dealing with uncertainty (Chap. 7).

Japan begins, at great expense, the “Fifth Generation Project™ with the goal of
building a powerful PROLOG machine.

R1, the expert system for configuring computers, saves Digital Equipment
Corporation 40 million dollars per year [McD#2].

Renaissance of neural networks through, among others, Rumelhart, Hinton and
Sejnowski [RME6]. The system Nettalk learns to read texts aloud [SRE6] (Chap. 9).

Pearl [Pea88], Cheeseman [Che85], Whittaker, Spiegelhalter bring probability theory
into Al with Bayesian networks (Sect. 7.4). Multi-agent systems become popular.

Tesauros TD-gammon program demonstrates the advantages of reinforcement
learning.

Worldwide RoboCup initiative to build soccer-playing autonomous robots [Robal.
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Table 1.1 (continued)

1995  From statistical learning theory, Vapnik develops support vector machines, which are
very important today.

1997  IBM’s chess computer Deep Blue defeats the chess world champion Gary Kasparov.
First international RoboCup competition in Japan.

2003 The robots in RoboCup demonstrate impressively what Al and robotics are capable of
achieving.

2006 Service robotics becomes a major Al research area.

2010 Autonomous robots start learning their policies.

2011 IBM'’s natural language understanding and question answering program “Watson™
defeats two human champions in the U.5. television quiz show “Jeopardy!”
(Sect. 1.4).

Fig. 1.4 A software agent
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Fig. 1.5 A hardware agent

Example 1.1 A spam flilter is an agent that puts incoming emails into wanted or
unwanted (spam) categories, and deletes any unwanted emails. Its goal as a goal-
based agent is to put all emails in the right category. In the course of this not-so-
simple task, the agent can occasionally make mistakes. Because its goal is to classity
all emails correctly, it will attempt to make as few errors as possible, However, that
1s not always what the user has in mind. Let us compare the following two agents.
Out of 100D emails, Agent | makes only 12 errors. Agent 2 on the other hand
makes 38 errors with the same 1,000 emails, Is it therefore worse than Agent 17 The
errors of both agents are shown in more detail in the following table, the so-called

“confusion matrix’™:

Agent 1: Agent 2:
correct class correct class
wanted | spam wanted spam
spam filter | wanted 189 1 spam filter |wanted 200 = 38

decides spam| 11 | 799 | decides spam| O | 762 |
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Agent 1 in fact makes fewer errors than Agent 2, but those few errors are severe
because the user loses 11 potentially important emails. Because there are in this
case two types of errors of differing severity, each error should be weighted with the
dppropriate cost factor (see Sect. 7.3.5 and Exercise 1.7 on page 14).

The sum of all weighted errors gives the total cost caused by erroneous decisions.
The goal of a cost-based agent 15 to minimize the cost of erroneous decisions in
the long term, that is, on average. In Sect. 7.3 we will become familiar with the
diagnostic system LEXMED as an example of a cost-based agent.

Analogously, the goal of a utility-based agent is to maximize the utility derived
from correct decisions in the long term, that is, on average. The sum of all decisions
weighted by their respective utility factors gives the total utility,

Of particular interest in Al are Learning agents, which are capable of changing
themselves given training examples or through positive or negative feedback, such
that the average utility of their actions grows over time (see Chap. 8).

As mentioned in Sect. 1.2.5, distributed agents are increasingly coming into use,
whose intelligence are not localized in one agent, but rather can only be seen through
cooperation of many agents.

The design of an agent is oriented, along with its objective, strongly toward its
environment, or alternately its picture of the environment, which strongly depends
on it sensors, The environment is observable if the agent always knows the com-
plete state of the world. Otherwise the environment is only partially observable.
If an action always leads to the same result, then the environment is deferministic.
Otherwise it is nondeterministic. In a discrete environment only finitely many states
and actions occur, whereas a confinuous environmen! boasts infinitely many states
OT actions.

1.4 Knowledge-Based Systems

An agent is a program that implements a mapping from perceptions to actions. For
simple agents this way of looking at the problem is sufficient. For complex applica-
tions in which the agent must be able to rely on a large amount of information and is
meant to do a difficult task, programming the agent can be very costly and unclear
how to proceed. Here Al provides a clear path to follow that will greatly simplify
the work.

First we separate knowledge from the system or program, which uses the knowl-
edge to, for example, reach conclusions, answer queries, or come up with a plan,
This system is called the inference mechanism. The knowledge is stored in a know!-
edge base (KB). Acquisition of knowledge in the knowledge base is denoted Knowl-
edge Engineering and is based on various knowledge sources such as human experts,
the knowledge engineer, and databases. Active learning systems can also acquire
knowledge though active exploration of the world (see Chap. 10). In Fig. 1.6 on
page 13 the general architecture of knowledge-based systems is presented.

Moving toward a separation of knowledge and inference has several crucial ad-
vantages. The separation of knowledge and inference can allow inference systems to
be implemented in a largely application-independent way. For example, it is much
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Fig. 1.6 Structure of a classic knowledge-processing system

casier to replace the knowledge base of a medical expert system than to program a
whole new system,

Through the decoupling of the knowledge base from inference, knowledge can
be stored declaratively. In the knowledge base there is only a description of the
knowledge, which is independent from the inference system in use. Without this
clear separation, knowledge and processing of inference steps would be interwoven,
and any changes to the knowledge would be very costly.

Formal language as a convenient interface between man and machine lends itself
to the representation of knowledge in the knowledge base. In the following chap-
ters we will get to know a whole series of such languages. First, in Chaps. 2 and 3
there are propositional calculus and first-order predicate logic (PL1). But other for-
malisms such as probabilistic logic, fuzzy logic or decision trees are also presented.
We start with propositional calculus and the related inference systems. Building on
that, we will present predicate logic, a powerful language that is accessible by ma-
chines and very important in AL

As an example for a large scale knowledge based system we want to refer to the
software agent “Watson™. Developed at IBM together with a number of universities,
Watson is a question answering program, that can be fed with clues given in natural
language. It works on a knowledge base comprising four terabytes of hard disk stor-
age, including the full text of Wikipedia [FNA+09]. Watson was developed within
IBM’s DeepQA project which is characterized in [Deel 1] as follows:

The DeepQA project at IBM shapes a grand challenge in Computer Science that aims to

illustrate how the wide and growing accessibility of natural language content and the in-

tegration and advancement of Natural Language Processing, Information Retrieval, Ma-
chine Learning, Knowledge Representation and Reasoning, and massively parallel compu-
lation can drive open-domain automatic Question Answering technology to a point where

it clearly and consistently rivals the best human performance.

In the U.S. television quiz show “Jeopardy!™, in February 2011, Watson de-
leated the two human champions Brad Rutter and Ken Jennings in a two-game,
combined-point match and won the one million dollar price. One of Watson's par-



14 1 Introduction

ticular strengths was its very fast reaction to the questions with the result that Watson
often hit the buzzer (using a solenoid) faster than its human competitors and then
was able to give the first answer to the question.

The high performance and short reaction times of Watson were due to an im-
plementation on 90 IBM Power 750 servers, each of which contains 32 processors,
resulting in 2880 parallel processors.

1.5 Exercises

Exercise 1.1 Test some of the chatterbots available on the internet. Start for exam-
ple with www.hs-weingarten.de/~ertel/aibook in the collection of links under Tur-
ingtest/Chatterbots, or at www.simonlaven.com or www.alicebot.org. Write down a
starting question and measure the time it takes, for each of the various programs,
until you know for certain that it is not a human.

## Exercise 1.2 At www.pandorabots.com you will find a server on which you can
build a chatterbot with the markup language AIML quite easily. Depending on your
interest level, develop a simple or complex chatterbot, or change an existing one.

Exercise 1.3 Give reasons for the unsuitability of the Turing test as a definition of
“artifictal intelligence” in practical Al

= Exercise 1.4 Many well-known inference processes, learning processes, etc. are
NP-complete or even undecidable. What does this mean for AlY

Exercise 1.5

(a) Why is a deterministic agent with memory not a function from the set of all
inputs to the set of all outputs, in the mathematical sense?

(b) How can one change the agent with memory, or model it, such that it becomes
equivalent to a function but does not lose its memory?

Exercise 1.6 Let there be an agent with memory that can move within a plane. From

its sensors, it receives at clock ticks of a regular interval At its exact position (x, y)

in Cartesian coordinates.

(a) Give a formula with which the agent can calculate its velocity from the current
time ¢ and the previous measurement of r — At.

(b) How must the agent be changed so that it can also calculate its acceleration?
Provide a formula here as well.

# Kxercise 1.7

(a) Determine for both agents in Example 1.1 on page 11 the costs created by the
errors and compare the results. Assume here that having to manually delete a
spam email costs one cent and retrieving a deleted email, or the loss of an email,
costs one dollar.

(b) Determine for both agents the profit created by correct classifications and com-
pare the results. Assume that for every desired email recognized, a profit of one
dollar accrues and for every correctly deleted spam email, a profit of one cent.



Propositional Logic

In propositional logic, as the name suggests, propositions are connected by logical
operators. The statement “the street is wel” is a proposition, as is “it is raining”.
These two propositions can be connected to form the new proposition

if it is raining the street is wel.
Written more formally
il 18 raining = the streel is wel.
This notation has the advantage that the elemental propositions appear again in un-

altered form. So that we can work with propositional logic precisely, we will begin
with a definition of the set of all propositional logic formulas.

2.1 Syntax

Definition 2.1 Let Op = {—. A. V.=, <, (, )} be the set of logical opera-
tors and X a set of symbols, The sets Op, X and {z. f} are pairwise disjoint.
X is called the signature and its elements are the proposition variables. The
set of propositional logic formulas is now recursively defined:

e {and f are (atomic) formulas.

e All proposition variables, that is all elements from X, are (atomic) formu-
las.

e If A and B are formulas, then —A, (A), AA B, AvB A=B8B A& B

are also formulas.

This elegant recursive definition of the set of all formulas allows us to generate
infinitely many formulas. For example, given X' = {A, B, C},

AAB, AABAC, AMNAANA, CABVA, (mAAB)=(-CvA)
are formulas. (((A)) v B) is also a syntactically correct formula.
W. Ertel, Introduction to Artificial Intelligence, 15

Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-299-5_1, © Springer-Verlag London Limited 2011
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Definition 2.2 We read the symbols and operators in the following way:

f: “true”
f: “false”
= A: “not A” (negation)
AAnB: "Aand B” (conjunction)
Av B: “"Aor B” (disjunction)
A= B: "if A then B” (implication (also called material implication))

A & B: “Aifandonlyif B” (equivalence)

The formulas defined in this way are so far purely syntactic constructions without
meaning. We are still missing the semantics.

2.2 Semantics

In propositional logic there are two truth values: ¢ for “true™ and [ for “false”™. We
begin with an example and ask ourselves whether the formula A A B is true. The
answer is: it depends on whether the variables A and B are true. For example, if A
stands for “[t is raining today” and B for “It is cold today” and these are both true,
then A ~ B 1s true. If, however, B represents “[t is hot today” (and this 1s false), then
A A B 1s false.

We must obviously assien truth values that reflect the state of the world to propo-

sition variables. Therefore we define

Definition 2.3 A mapping I : ¥ — {w, f}, which assigns a truth value to
every proposition variable, is called an inferpretation.

Because every proposition variable can take on two truth values, every proposi-
tional logic formula with n different variables has 2" different interpretations. We
define the truth values for the basic operations by showing all possible interpreta-
tions in a fruth fable (see Table 2.1 on page 17).

The empty formula is true for all interpretations. In order to determine the truth
value for complex formulas, we must also define the order of operations for logical
operators. If expressions are parenthesized, the term in the parentheses is evaluated
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Table 2.1 Definition ol the

logical operators by truth & B M) a4 ARE AYE A=E AwS

table i 1 ! i ! { t 1
r o f ¥ f t f
G | f i F f i f
I t f f t t

first. For unparenthesized formulas, the priorities are ordered as follows, beginning
with the strongest binding: —, A, WV, =, &,

To clearly differentiate between the equivalence of formulas and syntactic equiv-
alence, we define

Definition 2.4 Two formulas F and G are called semantically equivalent if
they take on the same truth value for all interpretations. We write F = .

semantic equivalence serves above all to be able to use the meta-language, that
is, natural language, to talk about the object language, namely logic. The statement
“A = B7 conveys that the two formulas A and B are semantically equivalent. The
statement “A < B on the other hand is a syntactic object of the formal language
of propositional logic.

According to how many interpretations in which a formula is true, we can divide
formulas into the following classes:

Definition 2.5 A formula is called
e Satisfiable if it is true for at least one interpretation.

e Logically valid or simply valid if it 1s true for all interpretations. True for-
mulas are also called tautologies.

o Unsatisfiable if it 15 not true for any interpretation.
Every interpretation that satisfies a formula is called a mode! of the formula.

Clearly the negation of every generally valid formula i1s unsatisfiable. The nega-
tion of a satisfiable, but not generally valid formula F is satishable.

We are now able to create truth tables for complex formulas to ascertain their
truth values. We put this into action immediately using equivalences of formulas
which are important in practice.
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Fig. 2.1 Svyntactic derivation and semantic entailment. Mod{ X') represents the set of models of a
formula X

and complete, then syntactic derivation and semantic entailment are two equivalent
relations (see Fig. 2.1).

To keep automaltic prool systems as simple as possible, these are usually made
to operate on formulas in conjunctive normal form.

Definition 2.8 A formula is in conjunctive normal form (CNF) if and only if
it consists of a conjunction

KiAKaA--- A Ky
of clauses. A clause K; consists of a disjunction
{LH W LEEV i Lfn,':]

of literals. Finally, a literal is a variable (positive literal) or a negated variable
(negative literal).

The formula (Av Bv -C)A (AV B) A (=B v —C) is in conjunctive normal
form. The conjunctive normal form does not place a restriction on the set of formulas
because:

Theorem 2.4 Every propositional logic formula can be transformed into an
equivalent conjunctive normal form.
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2.7 Applications and Limitations 29

2.7 Applications and Limitations

Theorem provers for propositional logic are part of the developer’s everyday toolset
in digital technology. For example, the verification of digital circuits and the gener-
ation of test patterns for testing of microprocessors in fabrication are some of these
tasks. Special proof systems that work with binary decision diagrams (BDD) () are
also employed as a data structure for processing propositional logic formulas.

In Al propositional logic is employed in simple applications. For example, sim-
ple expert systems can certainly work with propositional logic. However, the vari-
ables must all be discrete, with only a few values, and there may not be any cross-
relations between variables. Complex logical connections can be expressed much
more elegantly using predicate logic,

Probabilistic logic 1s a very interesting and current combination of propositional
logic and probabilistic computation that allows modeling of uncertain knowledge.
It is handled thoroughly in Chap. 7. Fuzzy logic, which allows infinitely many truth
values, 1s also discussed in that chapter.

2.8 Exercises

=+ Exercise 2.1 Give a Backus—-Naur form grammar for the syntax of propositional
logic.

Exercise 2.2 Show that the following formulas are tautologies:
(a) = (A A B) & AV B

(b) A= B & B = —A

() (A= B)A(B=A)) & (As B)

(d) (AvBIA(—mBVv )= (Av )

Exercise 2.3 Transform the following formulas into conjunctive normal form:
(a) A & B

(b) ArnB & Av B

(¢) AN(A= B)= B

Exercise 2.4 Check the following statements for satisfiability or validity.
(a) (play_lottery A six_right) = winner

(b) (play_lottery A six_right A (six_right = win)) = win

(¢) =(—gas_in_tank A (gas_in_tank v —car_starts) = —car_starts)

## Exercise 2.5 Using the programming language of vour choice, program a theorem
prover for propositional logic using the truth table method for formulas in conjunc-
tive normal form. To avoid a costly syntax check of the formulas, you may represent
clauses as lists or sets of literals, and the formulas as lists or sets of clauses. The pro-
gram should indicate whether the formula i1s unsatisfiable, satisfiable, or true, and
output the number of different interpretations and models.
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3.2 Semantics 23

Table 3.1 Examples of formulas in first-order predicale logic. Please note that mother here is a
function symbal

3.2 Semantics

In propositional logic, every variable is directly assigned a truth value by an inter-
pretation. In predicate logic, the meaning of formulas is recursively defined over the
construction of the formula, in that we first assign constants, variables, and function
symbols to objects in the real world.

Example 3.1 Let ¢y, 2, c3 be constants, “plus™ a two-place function symbol, and
“gr” a two-place predicate symbol. The truth of the formula

F = gf{pfﬂ&'{ﬂl ,C3), C3)

Obras protegidas por Direitos de Autor
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3.3 Quantifiers and Normal Forms 37

Definition 3.5 We write @[x /1] for the formula that results when we replace
every free occurrence of the variable x in @ with the term ¢. Thereby we do
not allow any variables in the term ¢ that are quantified in @. In those cases
variables must be renamed to ensure this.

Example 3.3 If, in the formula ¥x x = y, the free variable y is replaced by the term
x + 1, the result is ¥Vx x = x 4+ |. With correct substitution we obtain the formula
¥x x = y + 1, which has a very different semantic.

3.3 Quantifiers and Normal Forms

By Definition 3.4 on page 34, the formula ¥x p(x) is true if and only if it is true
for all interpretations of the variable x. Instead of the quantifier, one could write
play) A--- A play,) for all constants ay --- @, in K. For dx p(x) one could write
play) v -+ v play). From this it follows with de Morgan’s law that

Yx ¢ =—dx—gp,.

Through this equivalence, universal, and existential quantifiers are mutually replace-
able,

Example 3.4 The proposition “Evervone wants to be loved” 1s equivalent to the
proposition “Nobody does not want to be loved”.

Quantifiers are an important component of predicate logic’s expressive power.
However, they are disruptive for automatic inference in Al because they make the
structure of formulas more complex and increase the number of applicable inference
rules in every step of a proof. Therefore our next goal is to find, for every predicate
logic formula, an equivalent formula in a standardized normal form with as few
quantifiers as possible. As a first step we bring universal quantifiers to the beginning
of the formula and thus define

Definition 3.6 A predicate logic formula ¢ is in prenex normal form if it
holds that

* L= QI;':I A QHIH .

e 1 is a quantifierless formula.

o ;el¥,d}fori=1,...,n.
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3.4 Proof Calculi 41

Table 3.2 Simple proof with modus ponens and quantifier elimination

Wh: | child{eve, anne, oscar)

WE: 2z Yx ¥y Vzchild(x, v, z)= child(x,z.v)

YE(2): xfeve, v/anne, z/oscar 3 child(eve, anne, oscar) = child{eve, oscar, anne)
MP(1, 3) ! child{eve, oscar, anne)

or less intuitive and the calculi work on arbitrary PL1 formulas. In the next section
we will primarily concentrate on the resolution calculus, which 1s in practice the
most important efficient, automatizable calculus for formulas in conjunctive normal
form. Here, using Example 3.2 on page 35 we will give a very small “natural” proof.
We use the inference rule

A, A= 1B ¥x A

(modus ponens, MP) and ——
B Alx/t]

(¥-elimination, ¥ ).

The modus ponens is already familiar from propositional logic. When eliminating
universal quantifiers one must keep in mind that the guantified variable x must be
replaced by a ground term f, meaning a term that contains no variables. The proof of
child{eve, oscar, anne) from an appropriately reduced knowledge base is presented
in Table 3.2.

The two formulas of the reduced knowledge base are listed in rows 1 and 2. In
row 3 the universal quantifiers from row 2 are eliminated, and in row 4 the claim is
derived with modus ponens.

The calculus consisting of the two given inference rules is not complete. How-
ever, it can be extended into a complete procedure by addition of further inference
rules. This nontrivial fact is of fundamental importance for mathematics and Al
The Austrian logician Kurt Gadel proved in 1931 that [God31a]

Theorem 3.3 (Godel’s completeness theorem) First-order predicate logic is
complete. That is, there 15 a calculus with which every proposition that is a
consequence of a knowledge base KB can be proved. If KB = ¢, then it holds
that KB F .

Every true proposition in first-order predicate logic is therefore provable. But is
the reverse also true? Is everything we can derive syntactically actually true? The
answer is “yes’

Theorem 3.4 (Correctness) There are calculi with which only true proposi-
tions can be proved. That is, if KB~ @ holds, then KB = ¢.
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3.5 Resolution 45

For Completeness, however, we still need a small addition, as is shown in the
following example.

Example 3.7 The famous Russell paradox reads “There is a barber who shaves
evervone who does not shave himself.” This statement is contradictory, meaning it is
unsatisfiable. We wish to show this with resolution. Formalized in PL1, the paradox
reads

¥x shaves(barber, x) & —shaves(x, x)

and transformation into clause form yields (see Exercise 3.6 on page 55)

(—shaves(barbier, x) v —shaves(x, x))1 A (shaves(barbier, x) v shaves(x, x))>.
(3.7)

From these two clauses we can derive several tautologies, but no contradiction. Thus
resolution is not complete. We need yet a further inference rule.

Now a contradiction can be derived from (3.7)

Fak(l, o x/barber): (—shaves(barber, barber))s
Fak(2. o : x/barber): (shaves(barber, barber))y
Res(3.4): ()5

and we assert:

Obras protegidas por Direitos de Autor
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Definition 3.10 A structure (M.-) consisting of a set M with a two-place

Pk

inner operation . is called a semigroup if the law of associativity
Vx¥y¥z(x-y)-z=x:(y-2)

holds. An element ¢ € M is called left-neutral (right-neutral) if Yx e - x = x

IYxse =x).

It remains to be shown that

Theorem 3.7 [f a semigroup has a left-neutral element e; and a right-neutral
element ey, then e; = e,.

First we prove the theorem semi-formally by intuitive mathematical reasoning.
Clearly it holds for all x &€ M that

e -x=x (3.8)
and
S o o (3.9}

If we set x = ¢, in (3.8) and x = ¢; in (3.9), we obtain the two equations ¢; - e, = e,
and e; - e, = g;. Joining these two equations yields

€ = €] - €p = Ep,

which we want to prove. In the last step, incidentally, we used the fact that equality
15 symimetric and transitive.

Before we apply the automated prover, we carry out the resolution proof manu-
ally. First we formalize the negated query and the knowledge base KB, consisting of
the axioms as clauses in conjunctive normal form:

(—er=er ) negated query
(m(m(x, y).z)=m(x,m(y,z)))2

{m{e;. i — Ji']lj

(mix.,e.) =x)4

equality axioms:

(x =x)s (reflexivity)
(mx=yvy==xJs (symmetry)
(—mx =y VN oy—=zgVx=2) (transitivity)
(mx=yvmx,z)=m(yv,2))g substitution in m

(mx=yvm(z,x)=m(z,¥))o substitution in m,
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ROTATE(! : List) [' : List SHUFFELE(x : List) x' : List

pre frie pre frue

post post i : ltem-
({=[=1l'=[IA (Ix1, x3: List- x = x1[i]'x2 &
(I #£[1=1I' = (tail /) [head []) vy, va: List- x' = v i1 yv2)

Here “7 stands for the concatenation of lists, and “.” separates quantifiers with
their variables from the rest of the formula. The functions “head /™ and “tail {7
choose the first element and the rest from the list, respectively. The specification
of SHUFFLE indicates that every list element 7 that was in the list (x) before the
application of SHUFFLE must be in the result (x') after the application, and vice
versa. It must now be shown that the formula (PREyp = PREy) A (POST y =
POST g) 1s a consequence of the knowledge base containing a description of the
data type List. The two VDM-5L specifications yield the proof task

Wil x x':List-(l=xAl'=x"A{lw=w))A
G=xal'=x'Al=[1=V=[DAdZ£[=! = @)Thd]])

= Wi:ltem. (3xy.xz: List-x = x1[i]x2 < 3y, va: List-x" = y{"[i]"y2))),
which can then be proven with the prover SETHEOQ.

In the coming years the semantic web will likely represent an important applica-
tion of PL1. The content of the World Wide Web is supposed to become interpretable
not only for people, but for machines. To this end web sites are being furnished with
a description of their semantics in a formal description language. The search for
information in the web will thereby become significantly more effective than today,
where essentially only text building blocks are searchable.

Decidable subsets of predicate logic are used as description languages. The de-
velopment of efficient calculi for reasoning is very important and closely connected
to the description languages. A query for a future semantically operating search en-
gine could (informally) read: Where in Switzerland next Sunday at elevations under
2000 meters will there be good weather and optimally prepared ski slopes? To an-
swer such a question, a calculus 18 required that 15 capable of working very quickly
on large sets of facts and rules. Here, complex nested function terms are less impor-
tant.

As a basic description framework, the World Wide Web Consortium developed
the language RDF (Resource Description Framework). Building on RDF, the signifi-
cantly more powerful language OWL (Web Ontology Language) allows the descrip-
tion of relations between objects and classes of objects, similarly to PL1 [SETUY].
COntologies are descriptions of relationships between possible objects.
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Fig. 4.1 Possible consequences of the explosion of a search space

to the goal. Heuristic search is important not only to logic, but generally to problem
solving in Al and will therefore be thoroughly handled in Chap. 6.

An interesting approach, which has been pursued since about 1990, is the appli-
cation of machine learning techniques to the learning of heuristics for directing the
search of inference systems, which we will briefly sketch now. A resolution prover
has. during the search for a proof, hundreds or more possibilities for resolution steps
at each step, but only a few lead to the goal. It would be ideal if the prover could
ask an oracle which two clauses it should use in the next step to quickly find the
proof. There are attempts to build such proof-directing modules, which evaluate the
various alternatives for the next step and then choose the alternative with the best
rating. In the case of resolution, the rating of the available clauses could be com-
puted by a function that calculates a value based on the number of positive literals,
the complexity of the terms, etc., for every pair of resolvable clauses.

How can this function be implemented? Because this knowledge is “intuitive”,
the programmer is not familiar with it. Instead, one tries to copy nature and uses
machine learning algorithms to learn from successful proofs [ES58Y, SESU]. The
attributes of all clause pairs participating in successful resolution steps are stored
as positive, and the attributes of all unsuccessful resolutions are stored as negative.
Then, using this training data and a machine learning system, a program is generated
which can rate clause pairs heuristically (see Sect. 9.5).
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62 4 Limitations of Logic

If a set of formulas is extended, then, after the extension, all previously deriv-
able statements can still be proved, and additional statements can potentially also
be proved. The set of provable statements thus grows monotonically when the set of
formulas is extended. For our example this means that the extension of the know-
ledge base will never lead to our goal. We thus modity KB by replacing the obvi-
ously false statement “(all) birds can fiy” with the more exact statement “(all) birds
except penguins can fly” and obtain as KB; the following clauses:

penguintweety)

penguin(x) = bird(x)

bird(x) » —penguin(x) = flvix)
penguin(x) = —fly(x)

Now the world 1s apparently in order again, We can derive —fly(tweety), but not
flvirweety), because for that we would need — penguin(x), which, however, is not
derivable. As long as there are only penguins in this world, peace reigns. Every nor-
mal bird, however, immediately causes problems. We wish to add the raven Abraxas
(from the German book “The Little Witch™) and obtain

raveni{abraxas)

raven(x) = bird(x)
penguin{iweety)

penguin(x) =» bird(x)

bird(x) A = penguin(x) = fly(x)
penguin(x) = = fly(x)

We cannot say anything about the flight attributes of Abraxas because we forgot to
formulate that ravens are not penguins. Thus we extend KB5 to KBy:

raven(abraxas)

raven{x) = bird(x)

raven(x) = —pinguin(x)
penguinifweety)

penguin(x) = bird(x)

bird(x) A —penguin(x) = flv(x)
penguin(x) = —fly(x)

The fact that ravens are not penguins, which is self-evident to humans, must be
explicitly added here. For the construction of a knowledge base with all 9,800 or so
types of birds worldwide, it must therefore be specified for every type of bird (except
for penguins) that it is not a member of penguins. We must proceed analogously for
all other exceptions such as the ostrich.

For every object in the knowledge base, in addition to its attributes, all of the
atributes it does not have must be listed.
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5.8 Summary 79

AR ol ot RS
2 fd domain( [Mayer, Hoover, Miller, Smith],1,4),
3 fd all differenk ([Mayer, Miller, Haoover, Smikh]),
4
3 fd demain( [German, Ernglish, Math,; Physics], 1,47,
[ fd_all different|[German, English, Math, Physic=s]),
.
g fd_labeling! [Mayer, Hoover, Miller, Smith]}.
2
10 Mayer #\=4, ¥ Mayver not in room 4
11 Miller #= German, % Miller tests GCerman
1 dist(Miller, Smikth) #>= 2, % Distance Miller/Smith »= 2
1 Hoovrer 4= Math, % Hoowver tests mathematics
1 Physica #= 4, ¥ Physics in room 4
1 German #\=1, % German not in room 1
1 English #\=1, % English not in room 1
1 ¢ 1 I
1 write([Mayer, Hoowver, Miller, Smith]),; nl,
19 write | [German, English, Math, Phvsics]j), nl.

Fig. 5.5 CLP program for the room scheduling problem

Represented somewhat more conveniently, we have the following room schedule:

Room num. l 2 3 1
Teacher Hoover  Miller M ayer Smith
Subject Math German  English  Physics

GNU-PROLOG has, like most other CLP languages, a so-called finite domain
constraint solver, with which variables can be assigned a flinite range of integers.
This need not necessarily be an interval as in the example. We can also input a list
of values. As an exercise the user is invited, in Exercise 5.9 on page 81, to create a
CLP program, for example with GNU-PROLOG, for a not-so-simple logic puzzle.
This puzzle, supposedly created by Einstein, can very easily be solved with a CLP
system. If we tried using PROLOG without constraints, on the other hand, we could
easily grind our teeth out, Anyone who finds an elegant solution with PROLOG or
a prover, please let it find its way to the author.

5.8 Summary

Unification, lists, declarative programming, and the relational view of procedures,
in which an arcument of a predicate can act as both input and output, allow the de-
velopment of short, elegant programs for many problems. Many programs would be
significantly longer and thus more difficult to understand if written in a procedural
language. Furthermore, these language features save the programmer time. There-
fore PROLOG is also an interesting tool for rapid prototyping, particularly for Al
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Search, Games and Problem Solving

6.1 Introduction

The search for a solution in an extremely large search tree presents a problem for
nearly all inference systems. From the starting state there are many possibilities for
the first inference step. For each of these possibilities there are again many possi-
bilities in the next step, and so on. Even in the proof of a very simple formula from
[Ert93] with three Horn clauses, each with at most three literals, the search tree for
SLD resolution has the following shape:

e —— _— e e———
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The tree was cut off at a depth of 14 and has a solution in the leaf node marked by =,
It is only possible to represent it at all because of the small branching factor of at
most two and a cutoff at depth 14. For realistic problems, the branching factor and
depth of the first solution may become significantly bigger.

Assume the branching factor is a constant equal to 30 and the first solution is
at depth 50. The search tree has 30°" a2 7.2 x 107 leaf nodes. But the number of
inference steps is even bigger because not only every leal node, but also every inner
node of the tree corresponds to an inference step. Therefore we must add up the
nodes over all levels and obtain the total number of nodes of the search tree

I — 1&5'
Z’m” =7.4x 107,
1-30
d =()

which does not change the node count by much. Evidently, nearly all of the nodes
of this search tree are on the last level. As we will see, this is generally the case. But
now back to the search tree with the 7.4 x 107 nodes. Assume we had 10,000 com-
puters which can each perform a billion inferences per second, and that we could

W. Ertel, Introduction to Artificial Intelligence, 83
Undergraduate Topics in Computer Science,
DO 10.1007/978-0-85729-209-5_6, © Springer-Verlag London Limited 2011
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6.1 Introduction 87

Definition 6.1 A search problem is defined by the following values

State: Description of the state of the world in which the search agent finds
itself.

Starting state: The initial state in which the search agent is started.

Goal state: If the agent reaches a goal state, then it terminates and outputs a
solution (if desired).

Actions: All of the agents allowed actions.

Solution: The path in the search tree from the starting state to the goal state.

Cost function: Assigns a cost value to every action. Necessary for finding a
cost-optimal solution.

State space: Set of all states.

Applied to the 8-puzzle, we get
State: 3 »x 3 matrix § with the values 1,2, 3, 4,5,6,7, 8 (once each) and one empty
square.
Starting state: An arbitrary state.
Goal state: An arbitrary state, e.g. the state given to the right in Fig. 6.2 on page 56.
Actions: Movement of the empty square §;; to the left (if j 5 1), right (if j 5 3),
up (if i % 1), down (if i 5 3).
Cost function: The constant function 1, since all actions have equal cost.
State space: The state space is degenerate in domains that are mutually unreachable
(Exercise 6.4 on page 110). Thus there are unsolvable 8-puzzle problems.
For analysis of the search algorithms, the following terms are needed:

Definition 6.2

¢ The number of successor states of a state s 1s called the branching factor
b(s), or b if the branching factor is constant.

e The effective branching factor of a tree of depth d with n total nodes is
defined as the branching factor that a tree with constant branching factor,
equal depth, and equal n would have (see Exercise 6.3 on page 110).

o A search algorithm is called complete if it finds a solution for every solv-
able problem. If a complete search algorithm terminates without finding a
solution, then the problem is unsolvable.

For a given depth ¢ and node count n, the effective branching factor can be
calculated by solving the equation

sl (6.1)
= — .
bi—]
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6.2  Uninformed Search 91

DEPTH-FIRST-SEARCH(Node, Goal)

If GoalReached(Node, Goal) Return(“Solution found™)

NewNodes = Successors(Node)

While NewNodes £ ¢
Result = DEPTH-FIRST-SEARCH(First(NewNodes), Goal)
If Result = “Solution found™ Return(“Solution found™)
NewNodes = Rest(NewNodes)

Return(“No solution™)

Fig. 6.8 The algorithm for depth-first search. The function “First™ returns the first element of a
list, and “Rest™ the rest of the list

list of nodes is always expanded, and the new nodes sorted in. Thus we find the
optimal solution. The memory problem 1s not vet solved, however. A solution for
this problem is provided by depth-lirst search.

6.2.2 Depth-First Search

In depth-first search only a few nodes are stored in memory at one time. After the
expansion of a node only its successors are saved, and the first successor node is
immediately expanded. Thus the search quickly becomes very deep. Only when
a node has no successors and the search fails at that depth is the next open node
expanded via backtracking to the last branch, and so on. We can best perceive this
in the elegant recursive algorithm in Fig. 6.8 and in the secarch tree in Fig. 6.9 on
page 92.

Analysis  Depth-first search requires much less memory than breadth-first search
because at most b nodes are saved at each depth. Thus we need b - d memory cells.

However, depth-first search is not complete for infinitely deep trees because
depth-first search runs into an infinite loop when there is no solution in the far left
branch. Therefore the question of finding the optimal solution is obsolete. Because
of the infinite loop, no bound on the computation time can be given. In the case of
a finitely deep search tree with depth d, a total of about b nodes are gencrated.
Thus the computation time grows, just as in breadth-first search, exponentially with
depth.

We can make the search tree finite by setting a depth limit. Now if no solution is
found in the pruned search tree, there can nonetheless be solutions outside the limit,
Thus the search becomes incomplete. There are obvious ideas, however, for getting

the search to completeness.
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6.3  Heuristic Search 95

HEURISTICSEARCH( Start, Goal)

NodeList = [Start]
‘While True
If NodeList = ¥ Return(“No solution™)
Node = First{NodeList)
MNodeList = Rest(NodeList)
If GoalReached(Node, Goal) Retuarn(“Solution found™, Node)
NodeList = SortIn(SuccessorsiNode ), NodeList)

Fig.6.12 The algorithm for heuristic search

trouble. However, we do not carry out this kind of analysis because there is a very
high probability that our heuristic selection will succeed and will quickly get us to
our goal of eating tasty strawberries.

Heuristic decisions are closely linked with the need to make real-time decisions
with limited resources. In practice a good solution found quickly is preferred over a
solution that 1s optimal, but very expensive to derive.

A heuristic evaluation function f(s) for states is used to mathematically model a
heuristic. The goal 1s to find, with little effort, a solution to the stated search problem
with minimal total cost. Please note that there is a subtle difference between the
effort to find a solution and the total cost of this solution. For example it may take
Google Maps half a second’s worth of effort to find a route from the City Hall in
San Francisco to Tuolumne Meadows in Yosemite National Park, but the ride from
San Francisco to Tuolumne Meadows by car may take four hours and some money
for gasoline ete. (total cost).

Next we will modity the breadth-first search algorithm by adding the evaluation
function to it. The currently open nodes are no longer expanded left to right by row,
but rather according to their heuristic rating. From the set of open nodes, the node
with the minimal rating i1s always expanded first. This is achieved by immediately
evaluating nodes as they are expanded and sorting them into the list of open nodes.
The list may then contain nodes from different depths in the tree.

Because heuristic evaluation of states is very important for the search, we will
differentiate from now on between states and their associated nodes. The node con-
tains the state and further information relevant to the search, such as its depth in the
search tree and the heuristic rating of the state. As a result, the function “Succes-
sors’, which generates the successors (children) of a node, must also immediately
calculate for these successor nodes their heuristic ratings as a component of each
node. We define the general search algorithm HEURISTICSEARCH in Fig. 6.12.

The node list is initialized with the starting nodes. Then, in the loop, the first
node from the list is removed and tested for whether it is a solution node. If not, it
will be expanded with the function “Successors™ and its successors added to the list
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Frankfurt (0)
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Fig.6.16 Two snapshots of the A® search tree for the optimal route from Frankfurt to Ulm. In the
boxes below the name of the city s we show gis), i(s), f(s). Numbers in parentheses afier the
city names show the order in which the nodes have been generated by the “Successor™ function

In the top part of Fig. 6.16 we see that the successors of Mannheim are generated
before the successors of Wiirzburg. The optimal solution Frankfurt-Wiirzburg—Ulm
is generated shortly thereafter in the eighth step, but it is not yet recognized as such.
Thus the algorithm does not terminate yet because the node Karlsruhe (3) has a
better (lower) f value and thus is ahead of the node Ulm (8) in line. Only when
all f wvalues are greater than or equal to that of the solution node Ulm (8) have
we ensured that we have an optimal solution. Otherwise there could potentially be
another solution with lower costs. We will now show that this is true generally.

Theorem 6.2 The A* algorithm is optimal. That is, it always finds the solution
with the lowest total cost if the heuristic h is admissible.

Proof Inthe HEURISTICSEARCH algorithm, every newly generated node s is sorted
in by the function “SortIn” according to its heuristic rating f(s). The node with
the smallest rating value thus is at the beginning of the list. If the node [ at the



Image
not
avallable




6.3 Heuristic Search 101

Table 6.2 Comparison of the computation cost of uninformed search and heuristic search for
solvable 8-puzzle problems with various depths. Measurements are in steps and seconds. All values
are averages over multiple runs (see last column)

Depth lterative deepening A* algorithm Num.
Steps Time Heuristic /iy Heuristic fi- L
[sec] Sleps Time |sec| Sleps Time [sec|
2 20 (.003 3.0 (L0010 3.0 0.0010 10
4 81 0.013 5.2 0.0015 50  0.0022 24
6 206 .13 10.2 (10034 8.3 0.0039 19
] H433 1.0 17.3 (0060 12.2 0.0063 14
10 50512 7.9 48.1 0018 221 0.011 15
12 486731 15.7 162.2 (L4 6.0 0031 12
IDA*

14 - : 10079.2 2.6 B33.6 0.25 16
16 - - 69386.6 19.0 38065 1.3 13
087800 16l.6 30415 1401 4

| & = -

square the horizontal and vertical distances to that square’s location in the goal state
are added together. This value is then summed over all squares. For example, the
Manhattan distance of the two states

2[5 | []2][3]
[[als] and  [&]s][5]
7[3][s] 7= |

15 calculated as
has)=14+14+14+14+24+04+34+1=10.

The admissibility of the Manhattan distance is also obvious (see Exercise 6.13 on
page 111).

The described algorithms were implemented in Mathematica. For a comparison
with uninformed search, the A* algorithm with the two heuristics i) and h> and
iterative deepening was applied to 132 randomly generated 8-puzzle problems. The
average values for the number of steps and computation time are given in Table 6.2.
We see that the heuristics significantly reduce the search cost compared to unin-
[ormed search,

If we compare iterative deepening to A* with k| at depth 12, for example, it
becomes evident that | reduces the number of steps by a factor of about 3,000, but
the computation time by only a factor of 1,023, This is due to the higher cost per
step for the computation of the heuristic.

Closer examination reveals a jump in the number of steps between depth 12 and
depth 14 in the column for fi;. This jump cannot be explained solely by the repeated
work done by IDA*. It comes about because the implementation of the A* algorithm
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106 6 Search, Games and Problem Solving

leafl nodes would be created. This means that the depth limit and thus also the search
horizon are doubled with alpha-beta pruning. However, this is only true in the case of
optimally sorted successors because the child nodes’ ratings are unknown at the time
when they are created. If the child nodes are randomly sorted, then the branching
factor is reduced to b** and the number of leaf nodes to

3
P — .f:r-_ld_

With the same computing power a chess computer using alpha-beta pruning can, for
example, compute eight half-moves ahead instead of six, with an effective branching
factor of about 14. A thorough analysis with a derivation of these parameters can be
found in [PeaB4].

To double the search depth as mentioned above, we would need the child nodes to
be optimally ordered, which is not the case in practice. Otherwise the search would
be unnecessary. With a simple trick we can get a relatively good node ordering. We
connect alpha-beta pruning with iterative deepening over the depth limit. Thus at
every new depth llmit we can access the ratings of all nodes of previous levels and
order the successors at every branch. Thereby we reach an effective branching factor
of roughly 7 to 8, which is not far from the theoretical optimum of /35 [Nil9§].

6.4.3 Non-deterministic Games

Minimax search can be generalized to all games with non-deterministic actions,
such as backgammon. Each player rolls before his move, which is influenced by the
result of the dice roll. In the game tree there are now therefore three types of levels
in the sequence

Max, dice, Min, dice, ....
where each dice roll node branches six ways. Because we cannot predict the value

ol the die, we average the values ol all rolls and conduct the search as described
with the average values from [RN10].

6.5 Heuristic Evaluation Functions

How do we find a good heuristic evaluation function for the task of searching?
Here there are fundamentally two approaches. The classical way uses the knowledge
of human experts. The knowledge engineer is given the usually difficult task of
formalizing the expert’s implicit knowledge in the form of a computer program.
We now want to show how this process can be simplified in the chess program
example.

In the first step, experts are guestioned about the most important factors in the
selection of a move. Then it is attempted to gquantify these factors. We obtain a list
of relevant features or attributes. These are then (in the simplest case) combined into
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