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4 1 Introduction

1.2 THE WORLD OF DIGITAL SYSTEMS

Digital versus Analog

A digital signal, also known as a discrete signal, is a signal that at any time can have one
of a finite sel of possible values. In contrast, an araleg signal can have one of an infinite
number of possible values, and is also known as a continuous signal. A signal is just some
physical phenomenon that has a unigue value at every instant of time. An everyday
example of an analog signal is the temperature outside, becavse physical temperature is a
continuous value—the temperature may be 92.356666... degrees. An everyday example
of a digital signal is the number of fingers you hold up, because the value must be either
0,1,2,3,4,5,6, 7, 89, or l0—a finite set of values. In fact, the term “digital” comes
from the Latin word for “digit” {digitus), meaning finger.

In computing systems, the most commeoen digital signals are those that can have one of
only two possible values, like on or off {often represented as 1 or 0). Such a two-valued
representation is known as a binary representation. A digital system is a system that 1akes
digital inputs and generates digital outputs, A digital circuif 15 a connection of digital com-
ponents that together comprise a digital system. In this textbook, the term “digital™ will
refer to systems with binary-valued signals. A single binary signal is known as a binary
digit. or bir for short (binary digif). Digital electronics became extremely popular in the
mid-1900s after the invention of the transistor, an electric switch that can be turned on or off
uging another electric signal. We’ll describe transistors Turther in the next chapter,

Digital Circuits are the Basis for Computers

The most well-known use of digital eircuits in the world around us is prob-
ably to build the microprocessors that serve as the brain of general-purpose
computers, like the personal computer or laptop computer that you might
have at home, illustrated in Figure 1_.I{a). General-purpose computers are
also used as servers, which operate behind the scenes to implement banking,
airline reservation, web search, payroll, and similar such systems. General-
purpose computers take digital input data, such as letters and numbers
received from files or keyboards, and output new digital data, such as new

Figure 1.1 {a) General-purpose letters and numbers stored in files or displayed on a monitor. Learning about

LCLATREALL ler

{b) Embedded systems

Afapp O COND) prigue new digifal

digital design is therefore useful in understanding how computers work
“under the hood,” and hence has been required learning for most computing
and electrical engineering majors for decades. Based on material in
upcoming chapters, we'll design a simple computer in Chapter 8.

Digital Circuits are the Basis for Much More

Increasingly, digital circuits are bemg used for much more than imple-
menting general-purpose computers. More and more new applications
convert analog signals to digital ones, and run those digital signals through
customized digital circuits, to achieve numerous benefits. Such applications,
such as those in Figure 1.1{b}. include cell phones, automobile engine con-
trollers, TV set-top boxes, music instruments, digital cameras and
camcorders, video game consoles, and so on. Digital eircuits found inside
applications other than general-purpose computers are often called embedded
systems, because those digital systems are embedded inside another elec-

circuits were desigaed fn 20085, tronic device,

i
b,
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1 Introduction

Satellites CvVD Video Musical
Portable players recorders instrumeants
music players Cell phones Cameras TVs T
-
1895 1297 1895 201 20043 2005 2007

Figure 1.4 More and more analog products are becoming primarily digital.

Figure [.4, over the past decade numerous products that were previously analog have
converted primarily to digital technology., Portable music players, for example,
swilched from cassette tapes o digital CDs in the middle 1990s, and recently to MP3s
and other digital formats. Early cell phones used analog communication, but in the late
1990s digital communication, similar in idea to that shown in Figure 1.3, became dom-
inant, In the early 20005, analog VHS video players gave way to digital video disc
{DVD) players, and then to hard-drive-based digital video recorders (DVERs). Portable
video cameras have begun to digitize video before storing the video onto tape or a hard
drive, while still picture cameras have eliminated film and store photos on digital cards,
Musical instruments are increasingly digital-based, with electronic drums, keyhoards,
and electric guitars including more digital processing. Analog TV is also giving way to
digital TV. Hundreds of other devices have converted from analog to digital in past
decades, such as clocks and watches, household thermostats, human temperature ther-
mometers (which now work in the ear rather than under the tongue or other places), car
engine controllers, gasoline pumps, hearing aids, and more. Many other devices were
never analog, instead being introduced in digital form from the very start. For example,
video games have been digital since their inception,

The above devices use digitization, and digitization requires that phenomena be
encoded inte 15 and 0s. Computations using digital circuits also require that numbers be
digitized into 18 and 08. The next section describes how o encode items digitally.

» THE TELEPHONE.

The telephone, patented by Alexander Graham Bell in
the late 18005 (though invented by Antonio Meucei),
operates using the electromagnetic principle described
earlier—your speech creates sound waves that move a
membrane, which moves a magnet, which creates
current on a nearby wire. Run that wire to somewhere
far away, put a magnet connected to a membrane near
that wire, and the membrane will move, producing
sound waves that sound like you talking. Much of the
telephone system today digitizes the audio to improve
guality and quantity of audio transmissions over long
distances. A couple of intcresting facts about the
telephone;
* Believe it or nol, Western Union actually mrmed
down Bell's initial proposal w develop the
elephone, perhaps thinking that the then-popular

= Bell and his assistant

lelegraph was all people needed.

Watson  disagreed on
how o answer the
phone: Watson wanted
“Hello," which  won,
but Bell wanted “Hoy
hoy™ instead. (Fans of
the TV show The
Simmsons  may  have
noticed that Homer's
boss,  Mr.  Bums,
answers the phone with
a “hoy hoy.™)

An earlv-shvle relephone,

(Source of some of the above material: www.pbs.org,
transcript of “The Telephone").

Obras protegidas po

Direitos gel Autol
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12 Introduction
» NAMES IN BASE TEN.
English speakers use names for various quantities in instead “mineteen” Table 1.1 indicates how one
fndign Erglish  base ten, names that are uwseful but can hamper  might count in base ten without these various names,
frees @ mame for gaining an intuitive understanding of base ten. 10" o emphasize the natore of base ten. 523 might be
i‘:gﬁ&l“:‘:’_‘ I has ils own name: hundred. 100 hos the name  spoken as “five hundred two ten three” rather than
e A ! thovsand, There 18 no name (in Amencan English) “five hundred twenty-three.” Kids may have a harder
frdivm oo i % 5 B - : k
corpany Tta for 107 or 10F. 107 has the name million, and  tme leaming math becanse of the arbitrary base ten
Motors subsequent groups that are multiples of 1000 have  names—for example, carrying a one from the ones
unveiled the the names billion, trflion, guadiifion, ec. English  column 1o the tens column makes more sense il the
“one fakicar”  speakers also use abbreviated names for groups of  ones column sums to “one ten seven” rather than to
"lfr”"';;’lf @ MER tens—the numbers 10, 20, 30, ., 90 could be called  “seventeen”—"one ten seven” obviously adds one to
:!aﬁh-.'fum one fen, two len, up o nine ten, but instead have  the tens column. Likewise, leaming binary may be
ﬂm,ul.':sz sag.  abbreviated names: one ten as just “ten.” two ten is  slightly harder for some students due 1o a lack of a
“twenty,” up to nine ten being "ninety” You can see  solid understanding of base ten, To help remedy the
The Web search 0% “ninety™ is a Hh.nrlt:ning of “nine ten” Special Hi'r.u:i.tii}n,. pl:rhﬂjzls when 8 store ¢_El.':rk tells you “That
teolnisne numes are also used for the numbers between [Dand  will be minety-mine cents.” you mught say *You mean
Google comes 20, 11 could be “ope ten ome” but is instead  nine ten nine cenis.” If encugh of us do this, perhaps
from the word  “gleven” while 19 could be “one ten nine” but is it will catch on?
"poogel™ —a f o ; :
Fﬂ,,',::;d by fovy  1able 1.1 Counting in base ten without the abbreviated or short names,
ol T, r TP TR T * [P ]
s e TR Asusual: “zern)” “one” “twio” L Cmine!
implving tha 10 to 90 10, 11, 12, ... 19: “one ten,” “one ten one,” “one ten two,” ... “one ten ning”
ihe ""'If”' ‘:”I'r . 20,21, 22, ... 2 “two ten,” “two ten one,” “two ten two,” ... “two len nine”
search o lof o S R e
bt 30,40, . 90: “three wen” “four ten.” ... “nine ten |
100 o GO As usual: “one hundred,” “two hundred,” ... “nine hundred.” Even clearer would be to ﬁ—
replace the word “hundred™ by “ten to the power of 2.7 |
1000 and up As usual. Even clearer for understanding bases: replace “thousand” by “ten to the '
{power of} 37, “ten thousand™ by “ten to the 4, etc., eliminating the various names,
Example 1.1 Using digital data in a digital system :?:—j
A digital syvstemn s desired thal reads the temparature sensar
value of a temperature sensor and shows the "
letter “F" (for “freezing™) on a display if the lj ij "1 ::' "D "D “D 11 e
:::Inpﬂrmhum JiN‘:lf‘“ -:l-:ll..-,rr_'u.ti rl'..l.;ur-%n:u[l or Digital System
SOV, BNaS or norma I ine 1em-
z if {Input <= “00T00000% & “32*
perature 15 between 32 and 212 deprees, and output = *16001 10" 4 "F
shows the letter “B” (for “boiling™) if the else if {input »= *11010100% # ‘212*
temperature is 212 or greater, The tempera- output = “1000010" & “B*
ure sensci has an &-bit oulpul representing alss
the temperature as & binary number between output = “1001110° & “N*
(1 and 255. The display has & 7-bit input that i b : ; i
accepts an ASCII bil encoding and displays ¥ i
the cn:nqmpcrndnm symbol, display [ N
Figure 1.13 shows the wmperature
sensor oulpul connected 1o the input of the  Figure 113 Digital system with bit encoded input
desired digital system. Esch wire can have  {an 8-bit binary number) and 7-bit output { ASCII).
The desired behavior of the digital system is shown,
1
o
. & o @
: £y 9| 5

|
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Desired value: 73
[+ BRI JRRCRR ¢ N o s (NN o Nl o

I i T T T r YT ey T
— — — — — — — —

100 64 32 16 8 4 2 1 (b)
sUm; —= 64 -T2 73

OHP swilch

I i TR

ﬁsw% wrae :}lﬁ}n 1Jo Jo I H"'-.

—in

', " tinAsimg B |
I|II lﬂ'm = T I.'I
Yy alse ¥
) Ceiling fan Ouf=10 i

I
x“x\ module Out ( q/
¢ 5

Figure 1.17 Decimal to binary conversion for a DIP switch: {a) ceiling fan with remote control,
bath having DIP switches 1o set their communication channel, (h) setting the fan’s channel w
=73 reguires first converting 73 to binary, then setting the DIP switch to represent that binary
value, (¢} ceiling fan module only outputs 1 if the received channel matches DIP switch setting.

Imstead, hefshe can open the ceilling fan module and the remote controller of one par, and simply

change the DIP switch settings for that pair, ensuring that both DIP switches match after the change.

While this section introduced the addition method for converting from decimal to
binary, many books and web resources introduce the subiraction method, wherein we
start by setting a current number to the desired decimal number, put a 1 in the highest
binary number place that doesn’t exceed the current number, subiract that place’s weight
from the current number, and repeat until the current number reaches zero. The two
metheds are fundamentally the same; the addition method may be more intuitive when
converling by hand,

Hexadecimal and Octal Nombers

Base sixteen numbers, known as hexadecimal numbers or just fiex, are also popular in
digital design, mainly because one base sixteen digit is equivalent to four base two digits,
making hexadecimal numbers a nice shorthand representation for binary numbers. In base
sixteen, the first digit represents up to fitteen ones—the sixteen symbols commonly used
are 0, 1,2, ., 9. A B, C, D, E F (s0 A = ten, B = eleven, C = twelve, D = thirteen,
E = [owrteen, and F = fifteen). The next digit represents the number of groups of 16", the
next digit the number of groups of 16°, etc., as shown in Figure 1.18. So BAF ; equals
84167+ 10*16" + 15*16", or 2223,

i)

g

—o|@®
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1 Introduction

Decimal Binary

12 L
d 1
{eurrent value: 0}

o
1

1. Divide decimal number by 2
Insert remainder inte the binary number
Continue since quofient (5] is greater than O

2. Divide quotient by 2
Insart remaindar into the Ginary numbar
Continue since quolient (3) is greater than 0

il
2

{eurran! value: 0)

3, Divide quotient by 2 2
Insart remainder inte the binary number

]
i
V3 2.8
=2 2 1
Continue since quatient (1) is greater than 0 :
o
V1
i
1

|-

{eurran! value: 4)

4. Divide quotient by 2 2
Insart remaindar inte the kinary numbsar
CQuatient is 0, done

1100
8 4 2 1
feurrant value! 12)

Figure 1.21 Converting the decimal number 12 o binary using the divide-by-2 method.

1110, Checking the answer shows that 21110 is comrect: 1327 + 1222+ 12 s 052" =8 + 4+ 2 +
0= 14.

To comvert % o binary, the process s the same but paeally fakes more steps: 99002 = 49
remainder 1. 492 = X, remainder 1. 2452 = 12, remainder 0. 122 = 6, remainder . &2 = 3,
remainder (1. 32 = 1, remainder 1. 1/2 = 0, remainder 1. Combining the remainders together gives us
the binary number 1100011 We know from Example 1.3 that this is the correct answer,

We can use the same basic method (o convert a base 10 number to a number in any
hase. To convert a number from base 10 to base n, we repeatedly divide the number by n
and place the remainder in the new base » number, starting from the least significant
digit, The method is called the divide-by-n method.

Example 1.9 Decimal to arbitrary bases using the divide-by-n method

Convert the number 3439 to base 10 and w0 base 7.

We know the number 3439 15 3439 in base 10, but let's use the divide-by-n method {where n 15
10} 1o illustrate that the method works [or any base. We start by dividing 3439 by 10; 3439/10 =
343, remainder 9. We then divide the quotient by 10: 343/10 = 34, remainder 3. We do the same
with the new quotient: 34/3 = 3, remainder 4. Finally. we divide 3 by 10: 310 = 0, remainder 3.
Combining the remainders, least significant digit first, gives us the base 10 number 3439,

To comvert 3439 to base 7, the approach iz similar, except we now divide by 7. We begin by
dividing 3439 by 7: 34397 = 491, remainder 2. Continuing our calculations, we gel 49157 = 70,
remainder 1. 77 = 10, remainder 0. 1007 = 1, remainder 3, 1/7 = 0, remainder 1. Thus, 3439 in base
715 13012, Checking the answer verifies that we have the correct result: 17 4 3570 5 070 4 1*7) 4
247" = 2401 + 1029 + 7 + 2 = 3439,

Conversion between any two bases can be done by first converting to base ten, then
converting the base ten number to the desired base vsing the divide-by-n method.
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1 Introduction

Figure 1.25 shows an example of

the values of signals a, b, and F over 3 )
tume, with time proceeding to the Y
right. As time proceeds, cach signal b 1
may be either 0 or 1, illustrated by 0
each signal’s associated line being .
either low or high. We made a equal  F 5

1o 0 until time T:05, when we made o ! L L.

become 1, We made @ stay 1 untl 500 705 706 000 901 Brie
7:06, when we made @ return back to
0. We made @ stay 0 until 9;00, when
we made a become 1 again, and then
we made g become O at 9:01, On the
other hand, we made b start as 0, and then become 1 between 7:06 and 9:00. The diagram
shows what the value of F would be given the C program executing on the micropro-
cessor—when a is 1 and & is ¢ (from 7:05 o T:06), & will be 1. A diagram with time
proceeding to the right, and the values of digital signals shown by high or low lines, is
known as a fiming diagram. We draw the input lines (g and &) to be whatever values we
want, but then the output line {F) must describe the behavior of the digital system.

Figure 1.25 Timing diagram of motion-in-the-dark
detector syalem,

Example 1.10 Outdoor motion notifier using a microprocessor

Let’s use the basic microprocessor of Figure

[.23 o implement a system that sounds a o PD—@}
buzzer when motion is detected at any of I = Fl—— buzzer
three motion sensors ouiside a house, We s P2 —

connect the molon Sensors 1o MICroProcessor —l3 E 5

input pins &2, I, and f2, and connect output —i4 ﬁ L

pin Pl to a buzzer (Figure 1.26). (We assume = 2 2

the motion sensors and buzzers have appro- L PapF—

priate  electronic  interfaces to  the = P
MICEoprocessor pins.) We can then write the

following C program: ° a. ° motan sensor

vold maini()

( Figure 1.26 Motion sensors connected (o

while (1} { MICreprocessor.
PO = TQ || I1. || 1IZ;

}
|

The program executes the siatement inside the while loop repeatedly. That statement will set Fil
to 1 if I is 1 or(wntten as | | in the C language) 17 is 1 or [2 is 1, otherwise the statement sets P
1o 0,

e 3

]
I-l —_—
4]
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3z 1 Introduction

1.22 Convert the following hexadecimal numbers to binary:
fa) 413k
(b) 3FAD
{c) 3E2A
{d) DEED
1,235 Convert the following hexadecimal numbers to hinary:
(a) BOCH
(b 1EFO3
(o) FO02
(d) BEEF
1.24 Convert the following hexadecimal numbers w decimal:
(a} FE
{h) FOAZ
{¢) OFL0D
{d) 100
.25 Convert the following hexadecimal numbers to decimal:
(a) 10
(h) 4E3
(e} FFH)
(d) 200
26 Convert the decimal number 128 to the following number systems:
{a) binary
L (b hexadecimal |
e

=

ic) basc three

7 () Base ive o,

{21 base [ifteen

1.27 Compare the number of digits necessary to represent the following decimal numbers in
binary, octal, decimal, and hexadecimal representations, You need not determine the actual
representations—ijust the number of required digits, For example, representing the decimal
number 12 requires four digits in binary (1100 15 the actual representation), two digils in
actal {14), two digits in decimal (12}, and one digit in hexadecimal (C).
{a] &
{h) ol
() 300
() 1000
(e} 999900

1.28 Determine the decimal number ranges that can be represented in binary, octal, decimal, and
hexadecimal using the following numbers of digits. For example, 2 digits can represent
decimal number range O through 3 in hinary (00 through 113, O through 63 in octal (00
through 774, 0 throegh 9% in decimal (00 through 99%), and (0 through 255 in hexadecimal (00
through FF).
{a) 1
{h) 3
(el &
{dy &

!

N

e -

iy A A
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? Combinational Logic Design

> HOW TRANSISTORS ARE MADE SO SMALL—USING PHOTOGRAPHIC METHODS

If vou took a pencil and made the smallest dot that you
could on a sheet of paper, that dot's area would hold
many thousands of transistors on a modern silicon chip.
How can chip makers create such tiny transistors? The
key lies im photographic methods. Chip makers lay a
special chemical onto the chip—special because the
chemical changes when exposed w light. Chip makers
then shine light through a lens that focuses the light
down to extremely small regions on the chip—similar
to how a microscope’s lens lets us see tiny things by
focusing light, but in reverse. The chemical in the small
Muminated region changes, and then a solvem washes
away the chemical—but some regions stay because of
the light that changed that region. Those remaining

regions form parts of transistors. Repeating this process
over and over again, with different chemicals at
different steps. results not only in trangistors, but also
wires connecting the tmnsistors, and  insulators
preventing crossing wires from touching.

Photograph of a Pentium
processor's silicon chip,
having milhons of
transistors. Actual size is
about 1 ooy each side,

Atom or Celeron processor, requires only about 50 million transistors, and the processor
in a cell phone, like an ARM processor, may have only a few million transistors. Many of
today’s high-end chips, like chips inside Internet routers, contain tens or hundreds of such
microprocessors, and can conceivably contain thousands of even smaller microprocessors
{or just a few very hig micropro¢essors),

IC density has been doubling roughly every 18 months since the 1960s. The doubling
of IC density every 18 months is widely known as Meoere'’s Law, named after Gordon
Moore, a co-founder ol Intel Corporation, who made predictions back in 1965 that the
number of components per IC would double every year or so. At some point, chip makers
won't be able to shrink transistors any further. After all, the transistor has to at least be
wide enough to let electrons pass through, People have been predicling the end of
Moore's Law for two decades now, but transistors keep shrinking, though in 2009 many
observers noted a slowdown.

Mot only do smaller transistors and wires provide for more functionality in a chip,
but they also provide for faster circuits, in part because electrons need not travel as far o
get from one transistor o the next. This increased speed is the main reason why personal
computer clock speeds have improved so drastically over the past few decades, from kilo-
hertz frequencies in the 19705 1o gigahertz frequencies in the 20005,

» 2.3 THE CMOS TRANSISTOR

The most popular type of IC transistor 15 the CMOS transistor. A detailed explanation of
how a CMOS transistor works is beyond the scope of this book, but nevertheless a simpli-
fied explanation may satisfy much curiosity,

A chip is made primarly from the element silicon. A chip, also Kknown as an infe-
grated circuit, or 1C, is typically about the size of a fingernail. Even if you open up a
computer or other chip-based device, you would not actually see the silicon chip, since
chips are actually inside a larger, usually black, protective package. But yvou certainly
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“ab=01" ix
shariiand for
=il fe= )

*« OR returns 1 if either or both of ils operands are 1. So the resuli of a OR b is 1
in any of the following cases: ab=01, ab=10, ab=11. Thus, the only time
aOR bis 0 is when ab=00,

= NOT returns 1 if its operand is 0. S50 NOT(a) returns 1 if a is 0. and returns a if
ails 1,

We use Boolean logic operators freguently in everyday thought, such as in the state-
ment “T'11 go o lunch if Mary goes OR John goes, AND Sally does not 207" To represent
this using Boolean concepts, let F represent my going to lunch (F=1 means I'll go to
lunch, F=0 means | won't go). Let Boolean variables m, j, and s represent Mary, John,
and Sally each goimng o lunch (50 ==1 would represent Sally going 1o lunch, else s=0).
Then we can translate the above English sentence into the Boolean eguation:

F= (m OR j) AND NOT(a)

S0 F will equal 1 if either mor § 15 1, and s i5 0. Now that we’ve translated the
English sentence into a Boolean equation, we can perform several mathematical activities
with that eguation. One thing we can do is determine the value of F for different values of
m, i, and =:

* m=1, j=0,68=1—= F=(10R 0) AND NOT(1)=1 AND 0 =290
* m=1,i=1,8=0—= F=(10R 1) AND NOT{0)=1 AND 1

Il
[

In the first case, I don’t go to lunch; in the second, I do.
A second thing we could do s apply some algebraic roles (discassed later) to modify
the original equation to the equivalent equation:

F = {m and NOT({(s}))] OR (j and NOT(s})

In other words, I'll go to lunch if Mary goes AND Sally does not go, OR if John goes
AND Sally does not go. That statement, as different as it may look from the earlier state-
ment, is nevertheless equivalent 1o the earlier statement.

A third thing we could do is formally prove properties about the equation. For
example, we could prove that il Sally goes to lunch (a=1], then | don’t go to lunch (F=0})
no matter who else goes, using the equation:

F = (m OR j) AND MOT(1) = {(m COR j) AND 0 = 0

Mo matter what the values of mand 5, F will equal 0.
Noting all the mathematical activities we can do using Boolean equations, you can
start to see what Boole was trying to accomplish in formalizing human reasoning.

Example 2.1 Converting a problem statement to a Boolean equation

Convert the following problem statements to Boolean equations using AND, OR, and NOT opera-
tors. F should equal 1 only if:

l. aislandbis 1. Answer: F = a AND b

Loentherafaorbs 1. Answer F=a 0OR b

—(&—
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Example 28 Seat belt warning light weith initial illumination

Let's further extend the previous example. Automo-
hiles typically light up all ther warming hights when
you first turn the key. so that you can check that all the
warning lights are working. Assume that the system
receives an input £ that is 1 for the [irst 3 seconds after
a key is inserted into the ignition, and 0 afterwand
{don't worry about who or what sets t in that way). So
the system should sel w=1 when p=1 and ==0 and
kel, OR when t=1, Note that when t=1, the circuit
should illuminate the light. regardless of the values of
p. =, and k. The new circuit equation is:

w = (p AND NOT{s) AND k) OR t

The circet is shown in Figure 2.25.

Some circuit drawing rules and conventions

BaltWam

AN

T

There are some rules and conventions that designers
commonly follow when drawing circuits of logic gates,

as shown in Figure 2.26.

= Logic gates have one or more inputs and one

oulput, but each input and cutput 1s typically not
labeled. Remember: the order of the inputs into a
gate doesn't affect the gate’s logical behavior.
Each wire has an implicit direction, from one
gate’s output to another gate's input, but we typi-
cally don’t draw arrows showing each direction,

A single wire can be branched out into two (or
more) wires gomng to multiple gate inputs—the
branches have the same value as the single wire,
But two wires can NOT be merged o one
wire—what would be the value of that one wire
if the incoming two wires had different values?

2.5 BOOLEAN ALGEBRA

Figure 2.25 Extended seat
belt warning circuil.

ne yas

w5 0o 1 5
1=

lc)

Figure 2.26 Circuit drawing rules.

Logic gates are useful for implementing circuits, but equations are better for manipulating
circpits. The algebraie toels of Boolean algebra enable us to manipulate Boolean equa-
tions so we can do things like simplify the equations, check whether two equations are
equivalent, find the inverse of an equation, prove properties about the equations, etc.
Since a Boolean eguation consisting of AND, OR, and NOT operations can be straight-
forwardly transformed into a circuit of AND, OR, and NOT gates, manipulating Boolean
equations can be considered as manipulating digital circuits, We'll informally introduce
some of the most wseful algebraic tools of Boolean algebra. Appendix A provides a

formal definition of Boolean algebra.

—(&—
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Tedentity
B+ a=a+ 0 = &
1l +a=a* 1 = &

This one should be intuitive. ORing a with @ (a+0) just means that the result will
be whatever a is. After all, 1+0 is 1, while 0+0 is ¢. Likewise, ANDing a with
1 (a*1)resultsina. 1*1 is 1, while 0*1 is 0,

Complement

a + at 1

a w.g'.=1({

This also makes intuitive sense, Regardless of the value of a, a'  is the opposite,
soyougetafanda l,or you geta 1 and a ¢ One of {a, 2') will always be a 1,
s0 ORing them (a+a ') must yield a 1. Likewise, one of {a, a') will alwayvs be a
0, so ANDing them (a*a') must yield a 0.

The following examples apply these basic properties o some digital design examples o
see how the properties can help.

Example 2.11 Applying the basic properties of Boolean algebra

Use the properties of Boolean algebra for the following problems:

Show that abe ! s equivalent to ¢ ' ba.
The commutative property  allows  swapping the operands  being  ANDed, =0
a*h*g! = g*roe'*h = gf*a*h = gl*h*g = ¢'ba,

Show that abe + abe' = ab.

The fOrst  distmbutive  property  allows  lactoring out the ab  term:
abe + abc' = abi{c+c"). Then, the complement property allows replacing the c+ !
by 1: ab({c+c') = ab(l). Fially. the identity property allows removal of the 1 from
the AMD term: abi{l) = ab¥l = ah,

Show that the equation x + 2"z is equivalent o x + =

The second distributive property (the tricky one) allows replacing x+x'z by
(42!} * (x+z) . The complement property allows replacing (x+3 ') by 1. and the iden-
tity property allows replacing 1* (x+2) by x+=2.

Show that (a+a')bcisjust be.
The complement property states that (a+a') is 1, vielding 1 *bo. The identity property
then resuliz in be,

Multiply out {w + ) {v + 2) into sum-of-products form.
First writing (w + ) a8 & will make clear that the distribative property can be applied:
Alv+z). The first distributive property yields Ay + Az. Expanding A back yiclds
fweatdy + (w+x)z. Applving the first distributive property again  vields
wy 4+ xy + wz + xz. which i in sum-of-products form.

e

!

N
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output for every possible input. Thus, notice that truth tables were used in Figure 2.8 1o
describe in an intuitive manner the behavior of basic logic gates.

A drawback of truth tables is that for a large number of inputs, the number of truth
table rows can be very large. Given a function with # inputs, the number of inpul combi-
nations is 2", A function with 10 inputs would have 2' = 1024 possible input
combinations—you can't easily see much of anything in a table having 1024 rows. A
function with 16 inputs would have 65,536 rows in s truth table.

Example 2.18 Capturing a function as a truth table
TABLE 2.2 Truth table for Create o truth table describing a function that detects whether a
5-or-greater function, three-bit inputs’ value, representing a binary number, is 5 or
greater. Table 2.2 shows a truth table for the function. We first
2 b = F list all possible combinations of the three input bits, which
o ¥ 0 0 we've labeled &, B, and <. We then enter a 1 in the cutput row
0 o i a il the inputs represent 5, 6, or T in hinary, meaning the last
o 1 0 a three rows, We enter 0s in all the other rows,
0 1 1 0
1 0 0 0
1 D 1 1
1 1 a 1
| 1 1 1 1
."'-:"\.
‘Y" Converting among Boolean Function Representations
Given the above representations, converting from 1 ~i
one representation to another is sometimes necessary /Fr
or useful. For the three representations discussed so Eouaticng: e, A TRl
far [eqguations, circuits, and truth tables), there are { y B )
six possible conversions from one representation to : r
b}
another, as shown in Figure 2.36, which will now be
described S Truth tables -

Figure 2.36 Possible conversions
I. Equations to Circuits from one Boolean lunction
Converting an equation o a circuit can be done representation to another.
straightforwardly by using an AND gate for every
AND operatar, an OR gate for every OR operator, and a NOT gate for every NOT oper-

ator. Several examples of such conversions appear in Section 2.4,

2. Circuits to Equations

Converting a circuilt into an equation can be done by starting from the circuit’s inputs, and
then writing the output of cach gate as an expression involving the gate’s inputs. The
expression of the last gate before the output represents the expression for the circuit’s
function
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Inputs Outputs
a B: = ab {ab})' s F
4] 8] o 0 1 1 1
8 8] 1 0 1 0 a
4] 1 o Q 1 1 1
0 1 1 0 1 o 0
1 0 o 0 1 1 1
1 B 1 0 1 8] a
1 1 o 1 0 1 a
i 1 1 1 1] 8] 4]

Figure 2.42 Truth table for the circuil’s eguation.

From the Boolean equation, we can now construct the truth table for the combinational circuit.
Since our circuil has three inputs—a. b, and c—there are 2°= 8 possible combinations of inputs
{ie, abe=000, 001, 010, 01L, 100, 101, 110, 111) so the truth table has the
eight rows shown in Figure 2.42. For each inpul, we compute the value of F and [l in the corre-
sponding entry in the truth table. For example. when a=0, b=0, and c=0, F i (00} '*0' =
(0} '#*1 = 1*1 = 1.We compute the circuit’s output for the remaining combinations of inputs
nsing a truth table with intermediate values, shown in Figure 2.42.

Standard Representation and Canonical Form

Standard Representation—Truth Tables

As stated earlier, although there are many equation representations and circuit represen-
tations of a Boolean function, there is only one possible truth table representation of a
Boolean function. Truth tables theretore represent a standard representation of a func-
tion—for any function, there may be many possible eguations, and many possible
circuits, but there is only one truth table. The truth table representation is unigue.

(One use of a standard representation of a Boolean function is for comparing two
functions o see il they are eguivalent. Suppose you wanted 1o check whether two
Boolean equations represented the same function. One way would be to ey o mamipuolate
one equation 1o be the same as the other equation, like we did in the avtomatic shding
door example of Example 2.13. But suppose we were not successiul in getting them o be
the same—is that because they really are not the same, or because we just didn’t manipu-
late the equation enough? How do we really know the two equations do not represent the
same function?

A conclusive way to check whether two . R
iemns represent the same function 1% 10 créeate Feanea ::iaht:

a truth table for each, and then check whether =T F s =
the truth tables are identical. Se to determine T g g 1 a0 1
whether F = ab + a'isequmvalentto F = a | 1 a 1 i
a'b' + a'b + ab, we could generate 1 i} 0 1 0 ]
truth tables for each, using the method 1 1 1 1

described earlier of evaluating the function

for each cutput row, as Figurs 2.43. Figure 2.43 Truth tables showing cquivalence.

|
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Example 223 Binary number to seven-segment display converter

.

For Ihis example,

starting from &
iraih table iz a
More patural
clrodee than an
ST,

Muny electronic appliances display a number for us o read. Example appliasnces include a clock, o
microwave oven, and a telephone answering machine. A popular and simple device for displaving a
single digit number is a seven-segment display. illustrated in Figure 2.46.

e o S o F: -

b

—— 00 00 800

A < > R

— 10

i v s HEY -’ - -8
abcdefg = 1111110 011 BE00 1101101
(a) ib) el

Figure 298 Seven-segment display: (ap connections of mpuls 1o segments, (b} input values for
numbers @, 1, and 2, and (¢} a pair of real seven-segment display components.

The display consists of seven light segments, each of which can be illuminated independently
ol the others. A desired digit can be displaved by setting the signals a, b, o, d. e, £. and g appro-
priately. So o display the digit 8, all seven signals must be set to 1. To display the digit 2, b and ¢
are each set to 1. A few letters can be displayed too, like & lower case “b.”

Commonly, o mICroprocessor oulpuls

a 4-hit binary number intended to be shown i 3 .
on a seven-segment display as a decimal — { | d
{base ten) digit. Outputing four rather than b
en sionals e ; ' Canverter — g ——f——
seven signals conserves scarce pins on the =k Y1 —
. - a _I ", 2
microprocessor. Thus, a useful combing- &
tional circuit converts four bits w, =, ¥, and - :
z of a binary number to the seven-segment >

display signals a-g, as in Figure 2.47.

The desired circuit behavior is casily
captured as a table, shown in Table 2.4, In
case the microprocessor oulpuls a number grealer than %, no segments are activated.

We can create & custom logic circuit to implement the convener. Nome that Table 2.4 is in the
form of a truth table having multiple outputs {a through g). We can treat each output separately.
designing a circuit for a, then for b, etc. Summing the terms corresponding to the 15 in the a
column (as was done in Figure 2.40) leads to the following equation for a:

Figure 2.47 Binary to seven-segment converter,

A = wWw'a'y'zs! + wixK'vz' 4+ WR'YE + wixy'z + wlHyz!

+ w'xyz + wx'v'z' + wx'y'z
Likewise. summing the terms for the 15 in the B column leads w the following equation for b
B = w'xly'z! +
FoW'XYZ b

wi'xiylzes + wlx'yz!
WL'Y'EZ' + wx'y'sz
Equations could similarly be created for the remaining outputs ¢ through g. Finally, a circuit
could be created for a having B 4-input AND pates and an 8-input OR gate, another circuit for b
having 8 4-input AND gates and an S-input OR gate. and 20 on for o through g. We could, of
course, have minimized the logic for each equation before creating each of the circuits,
You may nolce that the eguations for a and & have several terms in common, For example, the
lerm w'x'y' 2" appears in both equations. So 1t would make sense for both cutputs to share one

+ W' X'¥= + ':l."}lI"'i."rE'
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76 » I Combinational Logic Design

Step ZA: Create equations. We create equations [as was done in Figure 2.40) for cach output as
follows:

¥y = a'be + ab'e + abg' + abec
2-= a'b'ec + a'be” + ab'c' + apg

We can simplify the first equation algebraically:
¥ = a'bec + ab'c + ablic' + ¢} = a'be + ab'c + ab

Step 2B: Implement as a gate-based circuit. We then create the tinal circuits for the two outputs,
as shown in Figure 2.49.
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Figure 2.43 Number-of-1s counter gate- hased circuit.

Simplifyving Circuit Notations

Some new simplifving notations were used in the circuits in the previous example. One
simplifying notation is to list the inputs multiple times, as in Figure 2.50{a). Such listing
reduces lines in a drawing crassing one another. An input listed muoltple times 15 assumed
to have been branched from the same input.

<IN -T2 =D}
) ﬂ—} e T
L5 g (b) ey

Figure 2,50 Simplifving circuit notations: (a) listing inputs multiple times to reduce drawing of
crossing wires, (b) using inversion bubbles or complemented input to reduce NOT pates drawn.

Another simplifying notation 18 the use of an inversion bubble at the input of a gate,
rather than the use of an inverter, as in Figure 2.50(b). An inversion bubble is a small
circle drawn at the input of a gate as shown, indicating that the signal is inverted. An
external input that has inversion bubbles at many gates is assumed w feed through a
single inverter that is then branched out to those gates. An alternative simplification is to
simply list the input as complemented, like b shown in the figure,
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» 2.8 MORE GATES

Designers use several other types of gates beyond just AND, OR, and NOT. Those gates
include MAND, MOE, XORE, and XNOR.

NAND & NOR

MAND A NAND gate (short for "not AND™) has the opposite output of an AND gate, outputling a
_ﬁ 0 only when all inputs are 1, and outputting a 1 otherwise (meaning at least one input is o).
— A NAND gate has the same behavior as an AND gate followed by a NOT gate. Figure

T— 2.540a) illustrates o MNAND gate.
A NOR gate ("not OR”) has the opposile output as an OR gate, outputling a © 1l @
NOR least one input is 1, and cutputting 1 if all inputs are 0. A NOR gate has the same

';_])7 behavior as an OR gate Tollowed by a NOT gate. Figure 2.54(b} shows a NOR gate,
Whereas Boolean algebra has the symbols “#7 and “+7 for the AND and OR opera-
tiong, no such commaonly-used operator symbols exist for NAND and NOR. Instead, the

NAND operation on variables a and b would be written as {a*b) * or just (ak) ', and
the NOR operation would be written as (a2 + bl .

MAND KOH XMOR
a2l q 0> J o~
—F | :
| ¥ /)_ 2. 7 |
Lo *x ¥YIF Xy | ¥ | F EYLE L
Sy o 11 g ol o 0| a 5 o S I | Uy il
o111 0 [ (O R o111 a1 |a
[ N 1 O | O 1 011 0] o l
1 110 i 7 |0 1 1 |0 S 1
@l g B} 4. ’ (&) id)

X —l.'4
Figure 2.54 Additional gates: (a)
NAMND, (b} NOR, (c) XOR, (d)
X —| XNOR,
¥
0==

Section 2.4 warned that the shown CMOS transistor implementations of AND and
OR gates were not realistic. The reason 1s because pMOS transistors don’l conduct 05
very well, but they conduct 1s just fine. Likewise, nMOS transistors don’t conduct 1s
well, but they conduct 03 just fine. The reasons for these asymmetries are beyond this
book’s scope. The implications are that the AND and OR gates in Figure 2.8 are not fea-
sible, as they rely on pMOS transistors to conduct ¢s (but pMOS conducts 0s poorly) and
nMOS transistors 1o conduet 15 (but nMOS conducts 1s poorly). However, if we switch
the locations of power and ground in the AND and OR circuits of Figure 2.8, the results
are the NAND and NOR gate circuits shown in Figure 2.540a) and Figure 2,.54(h).
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84 » I Combinaticnal Logic Design

N-variable function will have 2V rows in its truth table. Then, note that each
row can output one of two possible values. Thus, the number of possible functions will he
2% 20 2% 2 times. Therefore, the total number of functions is;

o

2&

-

S0 there are: 2° = 2" = 236 possible Boolean functions of 3 variables, and

23 = 3”’ = (53536 possible functions of 4 variables.

- 29 DECODERS AND MUXES

Decoders

Two additional components, a decoder and a multiplexer, are also commeonly used as
digital circuit building blocks, though they themselves can be buill from logic gates,

A decoder is a higher-level building block commonly wsed in digital circuits. A decoder
decodes an input #-bit binary number by setting exactly one of the deceder’s 27 outputs to 1.
For example, a 2-input decoder, illustrated in Figure 2.620a), would have =4 oulpuls, di3,
dz, di, do. If the two imputs 1110 are @0, d0 would be 1 and the remaining outputs would
be 0. 1f i1i0=01,dl wouldbe 1. If 1110=10,d2 would be 1. If 1110=11, 43 would be
1. One and only one output of a decoder will ever be 1 at a given lime, comesponding to the
particular carrent value of the inputs, as shown in Figure 2.62(a).

The internal design of a decoder is straightforward. Consider a 2x4 decoder. Each
gutput do, di, d2, and d3 15 a distinct function. d0 should be 1 only when 11=0 and
i0=0, 50 d0 = i1'i0"'. Likewise, d1=11'10, d2=i1i0', and 43=11i0. Thus, we
build the decoder with one AND gate for each output, connecting the true or comple-
mented values of 11 and 10 o each gate, as shown in Figure 2.62.

| Hao
40 —1 T = 40 0 * -1
o—io dilo 1—io dib-1 o—io d1 0
o—i1 d2l=0 o=l d2l=0 1—jii d2 o — Fr-d2
dd =0 A3 =0 s e i P s
{a) T j
| |
10
L +]]

Figure 2.62 2x4 decoder: (a) owtputs for possible input combinations, (b) internal design,
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likely o be correcl. However, sometimes designers start with an equation rather than a
truth table, as in Example 2.24. A designer can reverse engineer the circuit to an eguation,
but that eguation may be different than the original equation, especially if the designer
algebraically manipulated the original equation when designing the circuil. Furtherimore,
checking that two equations are equivalent may require converting to canonical form
{sum-of-minterms), which may result in huge eguations if the function has a large
number of inputs,

In fact, even if a designer didn’t make any mistakes in converting a mental under-
standing of the desired funcuon mto a truth table or equation, how does the designer
know that the original understanding was correct?

A commonly used method for checking that a circuit works as expected is called
simulation. Simulation of a circuit is the process of providing sample inputs to the circuit
and running a computer program that computes the circuit’s output for the given inputs. A
designer can then check that the output matches what is expected. The computler program
that performs simulation is called a simulator,

To use simulation to check a circuit, a designer must describe the circuit using a
method that enables computer programs to read the circuit. One method of describing a
circuit is to draw the circuit using a schematic capture wol. A schematic capiure tool

ai3al

]
Cill _})_BA

Figure 2.75 Display snapshot

of a commercial schematic

o I01:H1

capture tool. ERid

allows a user to place logic gates on a computer screen and to draw wires connecting
those gates, The tool allows wsers to save their circuit drawings as computer files, All the
circiil drawings in this chapter have represented examples of schematics—for example,
the circuit drawing in Figure 2.62(b), which showed a 1x4 decoder, was an example of a
schematic. Figure 2.75 shows a schematic for the same design, drawn using a popular
commercial schematic capture tool, Schematic capture is used not only to caplure circuitls
tor simulator tools, but also for tools that map our circuits o physical implementations,
which will be discussed in Chapter 7.

Once a designer has created a circuit using schematic capture, the designer must
provide the simulator with a set of inputs that will be used to check for proper output,
One wav of providing the mputs is by drawing wavetforms for the circuit’s inputs. An
input’s waveform is a line that goes from left to right, representing the value of the input
as time proceeds to the right. The line is drawn high to represent 1 and low to represent 0
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2.14 Exercises < 99

2.2 Forthe function F = a'd' + a'c + h'ed' + ed:

k-

-

1
1

I
1

i

[
A

L

fa) List all the variables.

ihy List all the hicrals.

{c) List all the product terms.

Let variables T represent being tall, H being heavy, and F being fast. Let's conswder anyone

who is not all as shorl, not heavy as light, and not fast as slow, Wrnte a Boolean equation 1o

represent each of the following:

{a) You may ride a particular amusement park ride only if yvou are either tall and light, or
short and heavy.

{h} You may MOT ride an amusement park ride if you are either tall and light, or short and
heavy, Use alzebea to simplify the equation © sum of products.

{c) You are eligible to play on a particular basketball team if you are tall and fast, or tall and
slow, Sumplity this equation.

{d) You are NOT eligible to play on a particular football team if you are short and slow, or if
you are light. Simplify to sum-of-products form.

{e) You are eligible o play on both the basketball and football teams above, based on the
above criteria. Hint: combine the two equations inlo one eguation by ANDing them.

Let variables 8 represent a package being small. H being heavy, and E being expensivie. Let’s

consider a package that 15 not small as big, not heavy as hight, and nol expensive as inexpen-

sive, Wrile a Boolean equation 10 represent each of the following:

{a) Your company specializes in delivering packages that are both small and incxpensive (a
packaze must be small AND inexpensive for us to deliver it); vou'll also deliver packages
that are big but only if they are expensive.

{b) A particular truck can be loaded with packages only if the packages are small and light,
small and heavy. or big and light. Simplify the equation.

{¢) Your above-mentioned company buvs the above-mentioned truck, Write an equation that
describes the packages your company can deliver. Hint: Approprately combine the equa-
tions from the above two parts,

Use algebraic manipulation to convert the following equation to sum-of-prodocts form:

F = albk + 1 {d")] + ac'lbk + d]

Use algebraic manipulation to convert the following equation to sum-of-products form:

F = a'kic + 4') + aik' + &) + albk + d)c

Use DeMorgan’s Law to find the inverse of the following equation: ¥ = abc + a'hb.
Reduce to sum-of-products form., Hint: Start with F' = (abc + a'b)!

! Use DeMorgan's Law to find the inverse of the following equation: F i

ac' + abd' + acd. Reduce o sum-of-products form.

SECTION 2.6: REPRESENTATIONS OF BOOLEAN FUNCTIONS
2.31 Convert the following Boolean eguations 1o a digital circut:

(a) Fla,b, gl = a'he + abk

ib) Fia,b,ci = a'b

c) Fla,b,2)l = abo + ab + a + b + &
(d} Fla,b,c) = c*
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100 » 2 Combinational Logic Design

Figure 2.79 Combinational circuit for G,

232 Create a Boolean equation representation of the digital circuit in Figure 2.78.
233 Create a Boolean eguation representation for the digital circnit in Figure 2.79.
2.3 Convert each of the Boolean equations in Exercise 2.31 to a truth table.
2.35 Convert each of the following Boolean equations to a truth table:

(a}) Fia,b, ¢l = a' + ba!

{h) Fi{a,b,cl lak)' + ac' + bc

(¢} Fila,b,c]l = g8h + ag + abh'g' + !

{d) Fla.b,e.,d] = a'bs + 4!

TABLE 2.8 Truth table. 236 Fill in Table 2.8°s columns for the  TABLE 2.8 Truth table.
=5 = i3 equabion: F = au:_'p + b | Inputs Ouaipat
] o [ 237 Convert the function F shown in = 5 TH =5 57 =EsET B
| o 0 1 1 the truth table in Table 2.9 to an W] ] |
P ¢ 1 D 1 equation. Don’t  minimize the 0 1 PN
"X"J i é é é equation 1 a H
1 0 1 1 238 Use algebraic manipulation o = -
1 1 D 1 minimize the eguation obtained in
T 1 1 1 Exercise 2.37.

2.3 Convert the function ¥ shown in the truth table in Table 2,10 to an eguation. Don’t minimize
TABLE 210 Truth table. the equation.

a boc & 240 Use algebraic manipulation o mimimize the equation obtamed in Exercise 2.39,
g g 2 ; 241 Convert the function F shown in the truth able in Table 2,11 o an eguation. Don't minimize
o 1 o 1 the equation.
g 1 A 0 242 Use algebraic manipulation to minimize the equation obtained in Exercise 2.41,
1 g E i 243 Create a truth table for the circuit of Figure 2.78.
1 1 0 1 244 Create a truth table for the circuil of Figure 2.79.
111 0 245 Converl the function F shown in the truth table in Table 2.% 10 a digital circuit.
TABLE 211 Truth table. 2.46 Convert the function F shown in the truth table in Table 2.10 to a digital circuit.
T F o r——  2.47 Convert the function F shown in the truth table in Table 2.11 o0 a digital circuil.
I o % | 0 245 Convert the following Boolean equations to canonical sum-of-minterms form:
g o 1 1 ja)Fla,b,c) = a'bc + ab
= = 2|2 (b}Fia,b,e) = a'b
1 o o o fe})Fla,b,c) = abec + ab + a + b + ¢
1 0 1 0 (dyFla,b,e) = o
1 i ) 1
1 X 1 1
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2.14 Exercises 101

249 Determine whether the Boolean functions F = (a + bl'*aand G = a + b' are

equivalent, using (ap algebraic manipulation and {b) truth tables,
I Determine whether the Boolean functions F = ab' and 3 = {a' + ak) ' are equivalent.
using (a) algebraic manipulation and (b) truth tables.
| Determine whether the Boolean function G =
a'h'c + ab'c + abc' + abc isequiv-
alent to the function represented by the circuit

in Figure 2.80, }H
2.532 Determine whether the two circuits in Figure .

1 L 1 ' X 1 —]
2.81 are equivalent circuits, using {a) algebraic

manipulation and (b} truth tables. L P

Figure 280 Combinational circuit for H.

£ — a— it

o—| ot A [ N
- D_Fc_jj—-}_j

g o —
Figure 2.81 Combinational circuits for F and .

233 * Figure 2,82 shows two circuits whose inputs are unlabeled.

ta) Determine whether the two circuits are equivalent. Hint: Try all possible labelings of the
inpuls for both circuits.

{by How many circuit comparisons would need to be performed to determine whether two cir-
cuits with 10 unlabeled inputs are equivalent?

[ "V

T T
5D

Figure 2.82 Combinational circusis for F and (5.

1
l

SECTIHN 2.7 COMBIMNATIONAL LOGIHE DESIHGN PROCESS

2.54 A museum has three rooms, each with @ motion sensor (m0, m1, and m2) that outputs 1 when

motion 15 detected. At night, the only person in the museum 15 one security guard who walks
from roomm o room. Create a circuit that sounds an alarm (by sefting an oulput A w0 1) if
motion 8 ever detecled in more than one moom at a Gme (.e., in lwo or three rooms), meaning
there must be one or more intreders 0 the moseam. Start with a ruth wable.

2.55 Create a circuit for the museum of Exercise 2.54 that detects whether the guard is properly

patralling the musewm, detected by exactly one motion sensor being 1. (If no motion sensor is
1, the guard may be sitting, sleeping, or absent.)
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256

257

2.60

Consider the musenm security alarm function of Exercise 2.54, but for a museum with [0
rooms, A truth table is not a good starting point (toe many rows), nor 1% an equation describing
when the alarm should sound (too many terms). However, the inverse of the alarm function can
be straightforwardly captured as an equation. Design the circuit for the 10-room security system
by designing the inverse of the function, and then just adding an inverter before the circuit’s
QUTpUL.

A network router connects multiple computers together and allows them to send messages to
each other. If two or more computers send messages simultaneonsly, the messages “collide”
and must be re-sent, Using the combinational design process of Table 2.5, create a collision
detection circuit for a router that connects 4 computers. The circuit has 4 inputs labeled 1o
through M3 that are 1 when the corresponding computer 15 sending a message and 0 other-
wise. The circuit has one output labeled € that is 1 when a collision is detected and 0
otherwise,

Using the combinational design process of Table 2.5, create a 4-bit prime number detector.
The circuit has four inputs—N3, N2, N1, and N0—that correspond to a 4-hit number (M3 is
the most significant bit) and one output P that 1s 1 when the input is a prime number and that
is 0 otherwise.

i A car has a fuel-level detector that outputs the current fuel-level as a 3-bit binary number, with

000 meaning emply and 111 meaning full. Create a circoit that illuminates a “low fuel” indi-
cator light {by sctting an output L to 1) when the fuel level drops below level 3.

A car has a low-tre-pressure sensor that outpuls the current tre pressure as a 3-hit binary
number. Create a circuit that illuminates a “low tre pressure” indicator light (by setting an
oulpul T to 1) when the tire pressure drops below 16, Hint: you might find it easier 1o create o
circuit that detects the inverse function. You can then just append an inverter to the output of that
circuil.

SECTION 2.8: MORE GATES

2.41

2.62

2.67

Show the conduction paths and ontput value of the NAND gate trangistor circuit in Figure
25 whems(alx = landy = 0,(B)x = 1andy = 1.

Show the conduction paths and output value of the NOR gate transistor circuit in Figure 2.54
when:{a)x = landy = 0. (bx = Candy = 0.

Show the conduction paths and output value of the AND gate transistor circuit in Figure 2.55
when: (a)x = landy = 1, (bix = pandy = 1.

Two people, denoted wsing variables A and B, want to ride with you on your motorcycle.
Write a Boolean eguation that indicates that exactly one of the two people can come (A=1
means A can come: A=01 means & can’t come). Then use XOR 1o simplily your equation.
simplify the following equation by using XOR wherever possible: F = a'b + ab' +
cd!' + o'd + ac.

Use 2-input XOR gates to create a circuit that outputs a 1 when the number of 15 on inputs a,
b, ¢. 4 is odd.

Use 2-input XOR or XNOR gates to create a circuil that detects whether an even number of
the inputs a, b, o, d are 15,

SECTION 2.9: DECODERS AND MUXES

268
260

2.70

2.71

Design a 3x8 decoder using AND, OR, and NOT gates.

Design a 4x16 decoder using AND, OR, and NOT gates.

Dicsign a 3x8 decoder with enable using AND. OR, and NOT gates.
Design an 8x1 muluplexer using AND, OR, and NOT pates.
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172 Design a 16x1 multiplexer using AND, OR, and NOT gates.
2.73 Design a 4-bit 4x1 multiplexer using four 4x1 multiplexers.

.74 A house has four external doors, each with a sensor that cutputs 1 if s door is open. Inside
the house 15 a single LED that a homeowner wishes 1o use 1o indicate whether a door is open
or closed. Because the LED can only show the status of one sensor, the homeowner buys a
swilch that can be set o (), 1, 2, or 3 and that has a 2-bit output representing the switch posi-
tlion in binary. Create a circuil to connect the four sensors, the swilch, and the LED. Use m
least one mux (o single mux or an N-bit mux) or decoder. Use block symbals, each with a
clearly defined function, such as “2x1 mux.” “8-bit 2x1 mux,” or “3x8 decoder™; do not show
the internal design of a mux or decoder.

275 A video system can accept video from one of two video sources, but can only display one
solrce at a given time. Each source outputs a stream of digitized video on its own 8-bit output.
A switch with a single-bit output chooses which of the two B-bit streams will be passed on a
display’s single 8-bit input. Create a circuit o connect the two video sources, the switch, and
the display. Use at least one mux {a single mux or an N-bit mux) or decoder, Use block sym-
bols, each with a cleardy delined function, such as “2x1 muex” “B-bit 2x1 mux” or “3x8
decoder™: do not show the internul design of 0 mux or decoder.

T A store owner wishes 1o be shle o indicate to customers that the ems in one of the store's
eight aisles are temporarily discounted ("on sale™), The store owner thus mounts a light above
each aisle, and each light has a single-hit input that twrns on the light when 1. The store owner
has a switch that can be setto 0, 1, 2, 3, 4, 5, 6, or 7, and that has a 3-bit output representing
the switch position in binary. A second switch can be set up or down and has a single-bit
output that is 1 when the switch is up; the store owner can set this switch down if no aisles are
cumrently discounted. Use at least one mux (a single mux or an N-hit mux) or decoder, Use
block svimbols, each with a clearly defined function, such as “2x1 mux.” “8-bit 2x1 mux.” or
“3x8 decoder™; do not show the intemal design of a mux or decoder.

SECTION 2.10: ADDITIONAL CONSIDERATIONS

2.77 Determine the critical path of the following specified circuits. Assume that each AND and OR
gate has a delay of 1 ns, each NOT gate has a delay of 0.73 ns, and each wire has o delay of
(.3 ns.
{a) The circuit of Figure 2.37.
{b) The circuit of Figure 2.41.

278 Design a x4 demultiplexer using AND, OR, and NOT gates.

279 Design an 8x3 encoder using AND, OR, and NOT gates. Assume that only one input will be
1 at any given time.

280 Degign o 4x2 priority encoder using AND, OR, and NOT gates. If every input is 0, the
engoder cutput should be 00,
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Samson enjoved physics
and math in college, and
focused his  advanced
studies  on integrated
circuit  (IC)  design,
believing the industry to
have a great
Years later, he realizes
his  beliel was true:
“Looking back 20 years
in high tech, we have
experienced four major
revolutions; the PC
revolution, digital revolution, communication revolution,
and Internet revolution—all four enabled by the IC
industry. The impact of these revolutions to our daily life
is profound.”

He has found his job o be “very challenging,
interesting, and exciting. I continually learn new skills to
keep up, and to do my job more efficiently.”

One of Samson’s key design projects was for digital
television, namely, high-definiton TV (HDTV), involving
companies like Zenith, Philips, and Intel. In particular, he
led the 12-person design team that built Intel’s first liguid
crystal on silicon (LCoS) chip for rear-projection HDTV,
*Traditional LCoS chips are analog. They apply different
analog voltages on each pixel of the display chip so 1t can
produce an image. But analog LCoS8 is very sensitive (o
noise and temperature vanation, We used digital signals to
do pulse width modulation on each pixel” Samson is
guite proud of his team’s accomplishments: “Our HDTY
picture quality was much better”

Samson also worked on the 200-member design team
for Intel’s Pentium 1l processor. That was a very different

fature.

experience. “For the smaller team project. each person
had more responsibility, and overall efficiency was high.
For the large team project, each person worked on a
specific part of the project—the chip was divided into
clusters, each cluster inte units, and cach unit had a
leader. We relied heavily on  design  flows and
methodologies.”

Samson has seen the industry™s peaks and valleys
during the past two decades: “Like any industry, the IC
job market has its ups and downs.” He believes the
industry survives the low points in large part due
innovation. “Brand names sell products, but without
innovation, markets go elsewhere. 50 we have to be very
innovative, creating new products so that we are always
ahead in the global competition,”

But "innovation doesn’t grow on trees.” Samson points
out. “There are two kinds of innovations. The first is
invention, which requires & good understanding of the
physice behind technology. For example, to make an
analog TV into a digital TY, we must know how human
eves perceive video images, which parts can be digitized,
how digital images can be produced on a sitheon chip, etc.
The second Kind of innovation reuses existing technology
for a new application, For example. we can reuse
advanced space technologies in a new non-space product
serving a bigger market, e-Bay is another example—it
rensed Internet technology for online aoctions.
Innovations lead to new products, and thus new jobs for
many years,”

Thus, Samson poeints out that “The industry is counting
on new engineers from college o be innovative, so they
can continee to drve the high-tech industry forward.
When you graduate from college, iU's up © vou 10 make
things better.”
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Sequential Logic Design:
Controllers

3.1 INTRODUCTION

The output of a combinational circuit is a function of the circuit's present inputs, A com-
binational circuit has no memory—the feature of a circuit storing new bits and retaining
those bits over time for later use. Combinational circuits alone are of limited vsefulness.
Designers typically use combinational circuits as part of larger circuits called segquential

| circuits—circuits that have memory. A sequenfial circuit is a circuit whose output |
e depends not enly on the circuit's present inputs, but also on the circuit’s present stafe, qr_ﬂ;__
AT’ which is all the bits currently stored in the circuit. The circuit's state in turn depends on ‘T
the past sequence of the circuit's input values.

An everyday sequential system example 13 a lamp that toggles (changes from off 1o
on, or from on 1o off) when its butten 15 pressed, as was shown in Figure 2.10c). After
plugging in the lamp. push the lamp’s button (the mput) a first time, and the lamp tums
on. Push the button a second time, and the lamp terns off. Push the button a third time,
and the lamp turns on again. The system’s output {whether the lamp is on or off) depends
on the input and on whether the system is currently 1n the stafe of the lamp being on or
off. That state in turn depends on the past sequence of input values since the syslem was
initially powered on. In contrast, an evervday combinational system example is o basgic
doorbell, as was shown in Figure 2. 1{a). Push the button {the input) now, and the bell {the
output} rings. Push the button again, and the bell rings again. Push the button tomorrow
and the bell rings the same each time. A basic doorbell has no state—its output value
iwhether the bell rings or not) depends solely on its present input value (whether the
button is pressed or not).

Most digital systems with which you are likely familiar involve sequential circuits. A
calculator contains a sequential circuit to store the nombers you enter, in order to operate
on those numbers. A digital camera stores pictures. A traffic light controller stores infor-
mation indicating which light is presently green. A Kitchen timer that counts down from a
gel lime to zero stores the present count value, 10 know what the next value should bhe.

This chapter describes sequential circuit building blocks called flips-flops and regis-
ters, which can store bits, It then introduces a sequential circuit design process in which a
designer first captures desired behavier, and then converts that behavior to a type of
sequential circuit known as a controller, comprised of a register and combinational logic.
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3 Seguential Logic Design: Controllers

» 3.2 STORING ONE BIT—FLIP-FLOPS

sequential circuit design 15 mded by a

building block that enables storing of a bit, Call :}_ Blue light
much like combinational circuit design was bMar = =il .
aided by the AND, OR, and NOT gate | Cancel [, | ==0°

building blocks. Storing a bit means that we on

can save either a 0 or a 1 in the block and
later come back to see what was saved. For system. Pressing Cali nims on the light,
example, consider designing the flight atten- -1 stays on afier Call is released,

dant call-button system in Figure 3.1. An Pressing Cancel turns off the light.

airline passenger can push the Call button to

lurn on a small blue light above the passenger’s seal, indicating to a flight attendant that
the passenger needs service, The light stays on even after the call button 15 released, The
light can be turned off by pressing the Cance! button, Because the light must stay on even
after the call button is released, a mechanism is needed 1o “remember™ that the call button
was pressed. That mechanism can be a bit storage block, in which a 1 will be stored when
the call button 15 pressed, and a ¢ stored when the cancel bution is pressed, The inputs of
this bit storage block will be connected to the call and cancel buttons, and the output to
the blue light, as in Figure 3.1. The light illuminates when the block’s output is L.

This section introduces the internal design of such a bit storage block by introducing
several increasingly complex circuits able to store a bit—a basic SR latch, a level-sensitive
aR latch, a level-sensitive D latch, and an edge-triggered D tlip-flop. The D flip-tlop will
then bhe used to create a hlock capable of storing multiple bits, known ag a register, which
will serve as the main bit storage block in the rest of the book. Each successive circuit elim-
inates some problem of the previous one. Be aware that designers today rarely use bit
storage blocks other than D flip-flops. We introduce the other blocks to provide the reader
with an underlying intuition of the D flip-flop’s internal design.

Figure 3.1 Flight attendant call-button

Feedback—The Basic Storage Method

The basic method used to store a bit in a digital circuit is feedback. You've surely experienced

tecdback in the form of audio feedback, when someone talking into a microphone stood in

ront of the speaker, causing a loud continuous humming sound 1o come out of the speakers (in

turn causing everyone to cover their ears and snicker). The talker generated a sound that was

picked up by the microphone, came out of the speakers (amplified), was picked up again by the

microphone, came oul the speakers again (amplified even more), ete. That's leedback.
Feedback in audio systems is annoying, but in digital

systems is extremely useful. Intuitively, we know that 5 o

somehow the output of a logic gate must feed back into the

fate itself, so that the stored bit ends up looping around and

arpound, hike a dog chasing 115 own tail. We might try the circun

in Figure 3.2, Figure 3.2 First {failed)
Suppose intially Qis 0 and 5 is 0. Al some point, suppose  altempt at using

we set S to 1. That causes © to become 1, and that 1 feeds back  feedback to store a bit.

into the OR gate, causing Q 1o be 1, ete. So even when 3 returns

&
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(3 stays 1 forever
Figure 3.3 Tracing the behavior of our first attempt at bit storage.

1o 0, @ stayvs 1, Unfortunately, @ stays 1 from then on, and we have no way of resetting 2 to
0, But hopefully you understand the basic wdea of feedback now—uwe did successfully store
a 1 using feedback, but we couldn’t store & 0 again.

Figure 3.3 shows the timing diagram for the feedback circuit of Figure 3.2, Initially,
we s¢l both OR gate inputs o 0 (Figere 3,.30a)). Then we set 2w 1 (Figure 3.3(b)), which
causes Q to become 1 slightly later {Figure 3.3(c)), assuming the OR gate has a small
delay as discussed in Section 2.10. @ becoming 1 causes € to become 1 slightly later
(Figure 3.3(d)), assuming the wire has a small delay too. © will stay at 1. Finally, when
we change 8 back to 0 (Figure 3.3(e)), ¢ will continue to stay 1 because t 15 1. The first
curved line with an arrow indicates that the evenl of S changing from 0 to 1 causes the
event of Q changing from 0 to 1. An event is any change on a bit signal from 0 o 1 or
from 1 to 0. The second curved line with an arrow indicates that the event of Q changing

from 0 to 1 in turn causes the event of £ changing from 0 to 1. That 1 then continues to
loop around, forever, with no way for S to reset Q1o 0,

Basic SR Latch

a s
.

i I

=]

Figure 3.5 NOR

biehaviorn

It turns out thaat the simple cirewit in Figure 3.4, called o basic
: ; . o S (sel) SR latch
SR latch, implements the bit storage building block that we
seek. The circuit consists of a pair of cross-coupled NOR
gates. Making the circuit’s S input equal to 1 causes Q to
become 1, while making B equal to 1 causes Q to become 0,
Making both 8 and R equal 1o 0 causes @'s current value (o
keep looping around. In other words, 2 “sets” the latch to 1,

and R “resets™ the latch to 0—hence the letters S (for sef) and ]
E (for reset).

R {rasel)

Let's see why the basic SR latch works as it does, Recall Figure 3.4 Basic SR latch.
that a NOR gate outputs 1 only when all the gate’s mpuis

equal 0, as shown in Figure 3.5; if at least one input equals 1, the NOR gate outputs 0.
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3 Seguential Logic Design: Controllers

Suppose we make S=0 and R=1, as
in the SR latch circuit of Figure 3.6, and
that the valees of Q@ and t are initially
unknown. Because the bottom gate of the
circuit has at least one input equal to 1
{®), the gate cutputs 0—in the timing dia-
gram, B becoming 1 causes Q o become
d. In the circuit, 9's 0 feeds back to the
top NOR gate, which will have both its
inputs equal 1o 0, and thus its output will
he 1. In the timimg diagram, Q@ becoming
0 causes t to become 1. In the circuit,
that 1 feeds back to the bottom NOR gate,
which has at least one input {actoally,

Figure 3.6 SR latch when 3=0 and R=1.

both) equal to 1, so the bottom gate continues to output ©. Thus the output Q equals 0, and
all values are sfable, meaning the values won™t change as long as no external input changes.

Now suppose we keep 2=0 and
change R from 1 back to 0, as in Figure
3.7, The bottomn gate still has at least one
input equal to 1 (the input coming from
the top gate), so the bottom gate con-
tinues to ouwtput 3. The top gate
confinues 1o have both mputs equal 1© ©
and continues to output 1. The output
will thus still be 0. Therefore, the earlier
R=1 stored a O into the SR laich, also
known as reseffing the latch, and that o
remains stored even when R is changed
back 1o 0. Note that R=1 will resel the
latch regardless of the initial value of Q.

Consider making S=1 and R=0, as
in Figure 3.8, The top gate in the circuit
now has one input equal to 1, so the op
gate outputs a 0—ithe uming diagram
shows the change of 2 from 0 1o 1,
causing t to change from 1 to 0. The top
gate's 0 output feeds back to the bottom
gate, which now has both inputs equal to
0 and thus outputs 1—the tming
diagram shows the change of & from 1
to O, causing Q to change from 0 to 1.
The bottom gate’s 1 output (Q) feeds
back to the top gate, which has at least
aone input (actually, both of its inputs)

i

4]

1

i
Figure 3.7 3R laich when £=0 and B=0, aller B
wis previously 1.

1 —

o
Figure 3.8 SR latch when 8=1 and R=0.

equal to 1, s0 the top gate continues to output 0. The output @ therefore equals 1, and all

values are stable.

—(&—
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Mext, congider making S=0 and
R=0 again, as in Figure 3.9. The top
gate still has at least one input equal to
1 (the input coming from the boltom
gate), so the top gate continues o
output @, The bottom gate continues to
have both inputs equal to 0 and con-
tinwes to output 1. The output Q 15 still
1. Thus, the earlier S=1 stored a 1 into
the SR latch, also known as sefting the
latch, and that 1 remains stored even
when we return S to 0. Note that S=1
will set the latch regardless of the initial
value of Q.

Call g
Buttarn t|_

Blu= fight

| (]
i e R Ld

r'-l-\'-
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T
5
Qi
1
H
i
1
i
0
1
Q
il
Figure 3.9 5K latch when S=0 and R=0, after 5
wias previously 1.
The basic SR latch can be used to implement the
fight attendant call-button svstem as shown in Figure
3.1, by connecting the call button 10 5, the cancel
button to B, and © to the light. Pressing the call button
sels 2 o 1, thus turning on the light. Q@ stays 1 even
when the call button is released. Pressing the cancel
button resets © to 0, thus turning off the light. O stays |
0 even when the cancel button 15 released. =

t\.TJ'
Figure 3.10 Flight attendant call-button system using a

basic SR latch.

Problem when SE=11 in a Basic SR latch
A problem with the basic S8R latch is that if S and R

are both 1, undefined behavior results—the latch
might store a 1, it might store a 0, or its cutput might oscillate, changing from 1 to 0 to
1 to 0, and 50 on. In particular, if 2=1 and R=1 (written as “SR=11" for short), both the
MNOR gates have at least one input equal to 1, and thus both gates output 0, as in Figure
J.11{a). A problem occurs when 8 and R are made 0 again. Suppose 2 and E return 1o 0
at the same time. Then hoth gates will have 0s at all their inputs, so each gate’s output
will change from 9 to 1, as in Figure 3. 11ib). Those 15 feed back to the gates’ inputs,
causing the gates to output 0s, as in Figure 3.1 1ic), These as feed back to the gale inputs
again, causing the gates to output 18 And =0 on. Going from 1 to 0 to 1 o 0 repeatedly
15 called escillation. Oscillation is not a desirable feature of a bt storage block,

1 —

M i i 8
(U1

Figure 3.11 The situation of S=1 and R=1 causes problems—a3 oscillates when SE return to 00,

|
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In a real circuit, the delays of the upper and =~ 4
lower gates and wires would be slightly different t,:, | | I | I | | | I |

from one ancther, So after some time of oscilla- ‘

on, one of the pates will get ahead of the other, ':Iﬂ |_| |_| |_| |_|
outputting a 1 before the other does, then a 0

before the other does, until it gets far enough

Figure 3.12 Q eventually settles 1o either
0 or 1, due to race condition.

ahead 1o cause the circuil to enter a stable situa-

tion of either Q=0 or ¢=1. Which situation will happen is unknown beforehand. A
situation in which the final output of a sequential circuit depends on the delays of gates
and wires 15 a race condifion. Figure 3.12 shows a race condition involving oscillation
but ending with a stable situation of Q=1.

External circuit

Call Ga SR latch
buticn
Cancsl ] I
buttan P R

-
Figure 3.13 Circuit added external to SR latch striving to
prevent SE=11 when both buttons are pressed.

Therefore, S and R must never be allowed to simul-
tancously equal 1 in an SR latch. A designer using
an SR latch should add a circuit external o the SR
latch that strives to ensure that 5 and R never
simultaneously equal 1. For example, in the flight
attendant call-button system of Figure 3,10, a pas-
senger pushing both buttons at the same time might
result in oscillation in the SR latch and hence a
blinking Light. The SR laich will eventually settle
to 1 or ¢, and thus the light will end up either on or
off. A designer might theretore decide that if both
butlons are pressed then the call button should take
priority so that SR won't both be 1. Such behavior
can be achieved using a combinational circuit in

front of & and R, as shown in Figure 3.13. 8 should be 1 if the call button {denoted as
Call) is pressed and either the cancel button (Cnel) 15 pressed or nol pressed. so
S = Call*Cncl + Call*Cnel® = Call. R should be 1 only if the cancel button is
pressed and the call button 15 nof pressed, meaning R = Cnel + Call'. The circuil in
Figure 3.13 is derived directly from these equations.

Even with such an external circuit, S and

ok

R could still imadvertently both become 1 due
to the delay of real gates (see Secuon 2.100).
Assume the AND and NOT gates in Figure
3.13 have delays of | ns each (ignore wire
delays for now ). Suppose the cancel button is
being pressed and hence SR=01, as in Figure
3.14, and then the call button is also pressed.
g2 will change from 0 10 1 almost immedi-
ately, but R will remain at 1 for 2 ns longer,
due to the AND and NOT gate delays, before
changing o 0. 2R would therelore be 11 for 2
ns. A temporary unintended signal value
caused by circuit delays is called a glitch.

Cail

=]

ek

Cnel

[=]

w
i R 1

LY

(£}
1
1]

o . e

|

i

o

|x"‘-“'
12 ns

]

Figure 3.14 Gate delays can
cause SE=11.
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Significantly, ghiches can also cauwse an
unintended latch set or reset. Assume that the
wire connecting the cancel button to the AND
gate in Figure 3.13 has a delay of 4 ns {(perhaps
the wire is very long), in addition to the 1 ns
AND and NOT gate delays. Suppose both
buttons are pressed, so 8R=10, and then the
buttons are both released—SR should become
0a. 5 will indeed change to 0 almost immedi-
ately, The top input of the AND gate will
become 1 after the 1 ns delay of the NOT gate.
The bottom input of that AND gate will remain
1 for 3 ns more, due to the 4 ns wire delay, thus
causing B o change 1. After that bottom input
finally changes to ¢, yet another 1 ns will pass
due 1o the AND gate delay before R returns to

w
..'

3.2 Storing One Bit—Flip-Flops 111

Call

cnol

SR SR =01
if T, {undasired
i 4 ahtew)

!4ns'!

[ S

Figure 3.15 Wire delay leading e a
glitch causing a reset,

0. Thus, B experienced a 4 ns ghitch, which resets the latch o 0—yet a resel is clearly not

what the designer intended.

Level -Sensitive SR Latch

A partial solution to the glitch problem is to
extend the SR latch 1o have an enabde input

Level-zansitive SR lalch |

Cas in Figure 3.16. When C=1, the Sand R
signals pass through the two AND gates to
the 51 and R1 inputs of the basic SR latch,
because S5+*1=3 and R*1=E. The laich is
enabled. But when C=0, the two AND gates
cause 51 and E1 to be 0, regardless of the
values of S and R. The latch is disabled.

51

The enable input can be set to 0 when S and
R might change so that glitches won’t prop-
agate through o 21 and R1, and then set to
1 only when S and R are stable. The ques-

Figure 316 Level-sensitive SR latch—an SR
latch with enable mput C.

tion then remains of when to set the enable input to 1. That question will be answered in

the upcoming sections.

Figure 3.17 shows the call button system from Figure 3.13, this time using an SR
latch with an enable input C. The timing diagram shows that if Cnel is 1 and then Callis
changed to 1, a glitch of SR=11 ocours, as was alresdy shown in Figure 314, However,
because C=0, S1R1 stay at 00. When we later set the enable input to 1, the stable SR
values propagate through to S1R1. An SR latch with an enable is called a level-sensitive
SR latch, because the latch is only sensitive o its 8 and B inputs when the level of the
enahle input is 1. It is also called a transparent SR latch, because setting the enable input
to 1 makes the internal SR latch transparent to the S and R inputs. It is also sometimes

called o gated SR laich.
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Leveal-sensitive SR latch

5 -,
Call —e -

Bm)
VAR

PN g =

M"\.‘I
) s

cnol

(a)

Figure 3.17 Level-sensitive SR latch: (a) an SR laich with
enable input C can reduce problems from glitching (b).

Notice that the top NOR gate of an SR latch outputs
the opposite value as the botiom NOR gate that outputs Q.
Thus, an output ©' can be included on an 3R latch almost
for free, just by connecting the top gate to an output
named ©'. Most latches come with both Q@ and Q' out-
puts. The symbol for a level-sensitive SR latch with such
dual cutputs is shown in Figure 3.18,

Level-Sensitive D Latch—A Basic Bit Store

A designer using a level-sensitive SR latch

Call

cnal

1
¥

=

[ mie Y

2 = O -

p L

1 Lorrect
I valnes when
r anabled

-
r A
i

31

O =

A1

Gliich of A {er S)
doesn’t
(b} affact A1 for 51)

o

Q'p— 1
—_— -;?-'—. !

s |

Figure 3,98 Symbol for dual-
outpul level-sensitive SR latch,

has the burden of ensuring that S and R are
never simultaneously 1 when the enable

D latch

input is 1. One way to relieve designers of
this burden is to introduce another type of
latch, called a level-sensitive I} lafch (also
known as a frransparent I} latch or gated D
latch), shown in Figure 3.19. Internally, the
latch’s D imput connects directly to the 3
input of a level-sensitive SR latch, and con-

nects through an inverter to the B input of the

SR latch. The D latch is thus either setting  Figure 313 D latch internal circuit,

iwhen D=1) or resetting (when D=0} iis
internal basic SR latch when the enable input C is 1.

i)

g

—o|@®
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CA C2 ca 4
Figure 3.22 A problem with latches—through how - [ 17 r
many latches will ¥ propagate for each pulse of

T F 1 +
Clk A7 ForClk B1 Clk_A | | I | Cik_B _ﬂ_”

3.2 Storing One Bit—Flip-Flops 113

A level-sensitive T lztch thus stores whiat-

1
ever value is present at the latch’s © input when D . F\] =

C=1, and remembers that wvalue when C=0.

|

Figure 3.20 shows a timing diagram of a [ laich o !

for sample input values on D and C; arrows indi- o

cate which signal changes cause other signals to 1

change. When D is 1 and ¢ is 1, the latch is set 5 0 Y

to 1, because 81 15 1 and R1 15 0. When D15 0 . / \L
and C is 1, the latch is reset to 0, because R1 is A1 )

1 and 51 is 0. By making R the opposite of 8, l\

the D latch ensures that 2 and R won’t bath be 1 a 1 '

at the same time, as long as D is only changed Q

when € is © {even if changed when © is 1, the  Figure 3.20 D latch timing diagram.
inverter’s delay could cause 5 and R to hoth be 1
briefly, but for too short of time to cause a

problem ).
The symbol for a D latch with dual-outputs —b @p—
iQand Q') is shown in Figure 3.21. Figure 3.21 D laich —_—r Cyh—
symbol.

Edge-Triggered D Flip-Flop—A Robust Bit Store

The D latch still has a problem that can cause unpredictable circuit behavior—namely,
signals can propagate from a latch output to another latch’s input while the cloek signal
is 1. For example, consider the circuit in Figure 3.22 and the pulsing enable signals—a
pulse is a change from 0 to 1 and back to 0, and a pulsing enable signal is called a clock
signal, When €1k = 1, the value on ¥ will be loaded into the first latch and appear at that
latch’s output. If €1k still equals 1, then that value will also get loaded into the second
latch. The value will keep propagating through the latches until Clk returns to 0.
Through how many latches will the value propagate for a pulse on C1k? It's hard to
say—we would have to know the precise timing delay information of each latch.

¥ D1 @i D2 Q2 D3 Q3—D4 Q4 —

Figure 3.13 illustrates this propagation problem in more detail. Suppose D1 18 ini-
tially @ for a long time, changes 1o 1 long enough to be stable, and then Clk becomes 1.
21 will thus change from 0 to 1 after about three gate delays, and thus D2 will also
change from 0 to 1, as shown in the left timing diagram. If Clk is still 1, then that new
value for D2 will propagate through the AND gates of the second latch, causing 82 to
change from 0 to 1 and R2 from 1 to a0, thos changing ©2 from © to 1, as shown in the
left timing diagram.

—(&—
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(0] ]
(o
1 D3 GaHD4 04)
3 o4
)
Clk
(&) r'h"w Toa short—G1
I e B o __{ ] doesnt charge
D1 _| o1
D2 Cng
S2 a2
A2 A2
Q2 -—-=2nd latch set Q2
(b {e)

Figure 3.23 A problem with level-sensitive latches: (a) while © =1, Q1's new value may propagate to D2, (h) such
propagation can cause an unknown number of latches along a chain to get updated, (¢) trying to shorten the clock’s
time at 1 to avoid propagation to the next latch, but long enough o allow a latch 1o reach a stable feedback situation,
is hard because making the clock’s high time too short prevents proper loading of the latch,

You might suggest making the clock signal such that the clock is 1 only for a short
amount of time, so there's not enough time for the new output of a latch to propagate to
the next latch’s inputs. But how short is short enough? 50 ns? 10 ns? 1 ns? (1.1 ns? And if
we make the clock’s time at 1 too short, that time may not be long enough for the bitat a
latch’s D input to stabilize in the latch’s feedback circuit, and we might therefore not suc-
cesstully store the bit, as illustrated in Figure 3.23(c).

A good solution is to design a more robust block for
storing a bit—a block that stores the bit at the D input at
the imsiant that the clock rises from 0 to 1. Note that we \ \\ \
didn’t say that the block stores the bit instantly. Rather, e |
the bit that will eventually get stored into the block is the  Figure 3.24 Rising elock edges.
bit that was stable at D at the instant that the clock rises
from © to 1. Such a block is called an edge-friggered
D flip-flop. The word “edge” refers 1o the vertical part of the line representing the clock
signal, when the signal transitions from 0 1o 1. Figure 3.24 shows three cycles of a clock
signal, and indicates the three rising clock edges of those cycles.

Edge-Triggered D Flip-Flop Using a Master-Servant Design. Une way 1o design an
edge-triggered D flip-flop is to use two D latches, as shown in Figure 3.25.

The first I? latch, known as the master, is enabled (can store new values on Dm) when
Clk is @ (due to the inverter), while the second D latch, known as the servant, is enabled

e

|
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O fip-Nap
D latch 0 latch
Dm Omp—Ds Q5" o—

om Cxs s
! : rmastar ’_ sanaEnd

&

Clk

Figure 3.25 A D flip-flop implementing an edge-triggered bit storage block. internally using two D
latches in o master-servant arrangement. The master D latch stores its Dmoinpul while C1k = 0. but
the new value appearing at Qm, and hence at D, does not get stored into the servant latch, because
thz servant latch s disabled when 1k = 0. When ©1k becomes 1, the servant I fatch becomes
enabled and thus gets loaded with whatever value was in the master latch at the instant that C1k
changed from 0 1o 1.

when €1k is 1. Thus, while Clk 15 0, the bit on D 15 stored into the master latch, and
hence Qm and Ds are updated—but the servant latch does not store this new bit, hecanse
the servant latch is not enabled since Clk is not 1. When C1lk becomes 1, the master
latch becomes disabled, thus holding whatever bit was at the & input just before the clock
changed from 0 to 1. Also, when Clk is 1, the servant latch hecomes enabled, thus
storing the bit that the master is storing, and that bit is the bit that was at the O input just
before Clk changed from © 1o 1. The two latches thus implement an edge-triggered
storage block—the bit that was at the input when Clk changed from 0 to 1 gets stored.

The edge-triggered
block uwsing two  imternal
latches thus prevents the
stored hit from propagating -
through moere than one flip- _P
flop when the clock is 1. ks
Consider the chain of flip-
flops in Figure 3.26. which
15 similar to the chain in
Figure 3.22 but with DI flip-
flops in place of D latches.
We know that ¥ will propagate through exactly one flip-flop on each clock eycle.

The drawback of a master-servant approach is that two I latches are needed 1o store
one bil. Figure 3.26 shows four flip-flops, but there are two lalches inside each Mip-lop,
for a total of eight lalches,

Many alternative methods exist other than the master-servant method for designing
an edge-triggered flip-flop. In fact, there are hundreds of difTerent designs Tor latches and
flip-flops beyond the designs shown above, with those designs differing in terms of their
size, speed, power, ete. When using an edge-triggered flip-flop, a designer usually doesn't
consider whether the flip-flop achieves edge-triggering using the master-servant method
or using some other method, The designer need only know that the Hlip-flop is edge-trig-

D4 Q4

Dz Q2 Dz Q3

I:—'—* I':-“-‘ ﬁ?—* :
Clk_A _I_Ll_l Clk_E I | | |

Figure 3.26 Using D flip-flops, we now know through how many
flip-flops ¥ will propagate for Clk_A and for Clk_ B—one flip-
flop exactly per pulse, for either clock signal.
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116 » 3 Seguential Logic Design: Controllers

Dhexipners
coetionly refer in
Mip-Taps as Just
“flops."

gered, meaning the data value present when the clock edge 15 rising 15 the value that gets
loaded mnto the flip-flop and that will appear at the Mip-Nop’s eutpat some Gme later.

The above discussion 15 Tor what 15 known as posifive or rising edge-tnggered flip-
flops, which are triggered by the clock signal changing from © to 1. There are also flip-tlops
known as megative or falling edge-triggered flip-flops, which are triggered by the clock
changing from 1 to 0. A negative edge-triggered D Mhip-flop can be buill using a master-
servant design where the second flip-flop’s clock input is inverted, rather than the first flip-
flop's.

Positive  edge-triggered  flip-flops  arne
drawn using a small triangle at the clock nput,
and negative edge-triggered flip-flops  are
drawn wsing a small triangle along with an
inversion hubble, as shown in Figure 3.27. > O
Because those symbels identify the clock input,
those inputs typically are not given a name.

Figure 3.27 Positive (shown on the left)

Bear in muind that although the master-
servant design deoesn’t change the output until
the falling clock edge, the flip-flop is still posi-

and negative (right) edge-triggered D
flip-flops. The sideways tnangle input
represents an edge-riggered clock input,

tive edgetriggerad, because the flip-flop stored
the value that was at the Ir input at the instant that the clock edge was rising.

Latches versux Flip-Flops:  Various texthooks define the terms fatch and Mip-fop differ-
ently. We'll use what seems to be the most common convention among designers, namely:

* A latch is level-sensitive, and
« A flip=flop 15 edge-triggered.
So saying “edge-triggered flip-flop™ would be redundant, since flip-flops are, by this
definition, edge-triggered. Likewise, saying “level-sensitive latch™ is redundant, since
latches are by definition level-sensitive.
Figure 3.28 uses a timing diagram to : !
illustrate the difference hetween level-sensi-
tive (latch) and edge-triggered (flip-flop) bit Clk 1 @
storage blocks. The figure provides an

the latch output follews the Dinput, so when
D changes from 0 to 1 (), s0 does the latch
output (7). The laich ignores the next
changes on D when Clk is low (), but then
follows D again when C1k is high (4, &).

example of a clock signal and a value on a 0 3| | i‘T IEI i &
signal D. The next signal trace is for the Q B |
output -:bi_" a F:l iznl-::h.~ which IE- ln::v-cl-.sc:nsltm:. @ (D latch) i 3 w0
The latch ignores the first pulse on D ', :
{labeled as ¥ in the figure) hecause Clk is : ;
low, However, when Clk becomes high (7). & D flip-flop) 59 wi

i I

Figure 3.28 Latch versus flip-flop timing,
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3.2 Storing One Bit—Flip-Flops 119

The circuit’s desired behavior can be captured as the TABLE 21 D truth table for
truth table in Table 3.1. If Call=0 and Cncl=0 (the first call-button system.
two rows), D cquals Q's value. If Call=0 and Cncl=1 (the
next two rows), D=0, If Call=1 and Cricl=0 (the next two
rows), D=1. And ifboth Call=1 and Cncl=1 {the last two
rows), the Call button gets priority, so D=1.

After some algebraic simplification, we obtain the fol-
lowing equation for D:

Call Cncl

D = Concl'0 + Call

HlR|RFR|H] Q| Q] O] &
Rl SOl | P ] &
(S I B ) B A R
el e N el =1 =1 N =1 =

We can then convert the equation o the circuit shown in
Figure 3.34{b). That circuil 15 more robusl than the earlier
circuit using an SR latch in Figure 3.10, But it is still not as
pood as it could be; Section 3.5 will explain why we might want to add additional flip-flops at the
Call and Cnel inputs. Furthermore, our design process in this example was ad hoe; the following
two sections will introduce better methods for capturing desired behavior and converting to a circuit,

The above sections went through several intermediate bit storage block designs
before armiving at the robust I flip-flop design. Figure 3.35 summarizes those designs,
including features and problems of each. Notice that the D flip-flop relies on an internal
SR latch to maintain a stored bit between clock edges, and relies on the designer to intro-
duce feedback outside the I Mhp-flop o maintain a stored bit acress clock edges,

ER latch| | Level-sansttve 3R zich D laleh D fip-fep
#.{0e0) S B E D latch| |Diateh]
: D om amDbs s
om Cs Gsi—
2|3 % master| | | servant
B (resel) R A1 = +

Fealura: 5=1 Fealure: Sand Bonly  Fealure: SR can'tbe 11. Fealure! Only loads D value
sats Gt 1, R=1  have effectwhen C=1.  Probiemny G=1 for too long  present at rising clock edge,

resets O to 0. An external circuit can will propagate new values so valuas can't propagate fo
Frabigm: prevent SH=11 when through too many latches; other flip-llops during same
SH=11 yields C=1, for too shart may not clock cycle. Tradsoff: uses
undetined Q, Profdam: avoiding resuUlt it the bil being mare gates internalhy, and
other glitches SR=11 can be a burden. stored. reqguires more external gates
may selfressl than SR—bul fransistors loday
inadvertenily, are maore pleniiful and cheaper,

Figure 3.35 Increasingly better bat storage blocks, leading to the D flip-flop,
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120 » 3 Seguential Logic Design: Controllers
> A BIT OF HISTORY—RS, JK, T, AND D LATCHES AND FLIP-FLOPS.
Many texthooks. especially those with origing in the  means tochange from 0 w1, orfrom 1 to 0), anda T flip-
19705 and 19805, introduce several types of latches and — Mop with a single input T that wggles the flip-flop when
flip-flops and use many pages o describe how to design 1, For a given desired behavior, using a particular flip-
sequential circuits using those different types. In the  flop type could save transistors. Desigming sequential
| 9805, ransisiors on ICs were more costly and scarcer  circuits for any flip-flop type was a challenging task,
than today. The D flip-flop-based design for the call-  involving something called “excitation tables™ and
button: system in Figure 3.34(b) uwses more ransistors comparison of different designs, and was helptul for
tham the SR-latch-hased design in Figure 3.10—not only  reducing circuit transistors. But today, in the ers of
does a D fip-flop contmn more transistors internally, but - billion-transistor 1Cs, the savings of such flip-flops are
it may require more extermal logic to set D o the  trivial. Nearly all modemn sequential circuits use I flip-
appropriate value, Other flip-flop types included a JK  flops and hence are created using the more
flip-Aop that acts like an SR fip-flop plus the behavior  straightforward design process introduced in this chapier.
that the flip-flop toggles if both inputs are 1 {loggle
Basic Register—Storing Multiple Bits
A register is a sequential component that can store multiple bits. A basic register can be
buall simply by using multiple D flip-flops as shown in Figure 3.36. That register can
hold four bits. When the clock rises, all four flip-flops get loaded with inputs Io, I1, I2,
and I3 simultaneously.
3 2 I [0 |
L L L |jbil register Ll 7?1—
0 0o 0O | 0 I3 12 11 10 |
Q= Q Q Q > reply) '
= s = > Q3020100
ol || 9 i | N _‘ Goe e
|
3 o2 LB 3 ] 4]
(a) (B)

Figure 3.36 A basic 4-hit register: (u) internal design, {b) block symbaol.

Such a register, made simply from multiple flip-flops, is the most basic form of a
register—so basic that some companies refer to such a register simply as a “4-bit D flip-
flop.” Chapter 4 introduces more advanced registers having additional features and
operations.

Example 3.2 Temperature history display using registers

We want o design a system that records the outside lemperature every hour and displays the last
three recorded temperatures, so that an observer can sec the temperature trend, An architecture of
the system 1s shown in Figure 3.37.

A timer generates 8 pulse on signal C every hour, A temperature sensor outputs the present
temperature as a 3-bit hinary number ranging from 0 to 31, corresponding to those temperatures in
Celsius. Three displays convert their 3-bit binary mputs mnto & numerical display.
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Figure 3.37 Temperature
history display system.
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{in practice, we would aclually avoid connecling the limer oulpul

C o a clock inpul, Instead only connecling an oscillalor oulput fo a clock inpul. )

We can implement the TemperatureHistoryStorage component using three 5-bit registers, as

shown in Figure 3,38, Each pulse on signal

C o loads Ra with the present temperatune on inputs

x4 . . x0 (by loading the 5 Mip-flops inside Ra with the 5 input bits). At the same time that register
Ra gets loaded with that present temperature, register Bb gets loaded with the value that was in Ra.
Likewise, R gets loaded with Eb's value. All three loads happen at the same time, namely, on the
rising edge of ©. The effect is that the values that were in Ra and Bb just before the clock edge are
shifted into Bb and Re, respectively.

P41

K,

$ 4

'
ja-#TaﬁfaE atl|ad
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--%- 3 Q3 : I3 Q3 : 3 02

—--EI- 12 e & Iz (i [ - [ Cig
Figure 3.38 _— n * 1 o - 1 o
Internal design of ""‘E"‘ o Qo — [0 00D —i 0 00
the Temperature 5 > Ra > .

History Storage

Tl

ba b3 hE*b IfbD

l—}- Rb

r_'t:-mpuru:nt-

$ 4 I
_Tn:d cd|c |21 (e
4 Q4

TemperatureHistory Storage

Figure 3,39 shows sample values in the registers for several clock cycles, assuming all the reg-

isters imitially held 0s, and assuming that os time proceeds the inpuls x4 .

shown at the top of the timing diagram,

Figure 3.39 Example of
values in the
FemperatureHistory
Storgge registers, One
particular data item. 18, is
shown moving through the
regiaters on each clock
cycle.

Lx0 have the values
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122 » 3 Seguential Logic Design: Controllers

This example demonstrates one ol the desirable aspects of synchronous circusts built from edge-
triggered flip-flops—many things happen at once, yet we need not he concerned about signals propa-
gating too fast through a register to another register. The reason we need not be concerned is because
registers ondy gt loaded on the rising clock edpe. which effectively is an infinitely small pericd of
time, so by the time signals propagate through a register to a second register, its too late—that second
register is no longer paving attention to its data inputs,

In practice, designers avoid connecting anything but an oscillator’s cutput to the
clock input of a register. A key reason 15 so that automated tools that analyze a circuil’s
fiming characteristics can work properly; such tools are heyvond the scope of this hook.
We connected a timer's output, which pulsed once per hour, in the above example for the
purpose of an intuitive introduction te registers. A befter implementation would instead
have an oscillator connected to the clock input, and then use the “load™ iput of a register
when the timer output pulsed. The load input of a register will be introduced in Chapter 4.

3.3 FINITE-STATE MACHINES (FSMS)

-

Example 3.3

Registers store bits in a digital circuit. Stored bits mean the circuit has memeory resulting
in sequential circuits. A circuit’s sfafe is the value of all a circoit’s stored bits, While a
register storing hits happens to result in a circuit with state, state can be mtentionally used
to design circuits that have a specific behavior over time. For example, we can specifi-
cally design a circuit that outputs a 1 for exactly three cycles whenever a button is
pressed. We could design a circuit that blinks lights in a specific pattern. We could design
a circuit that detects if three buttons get pushed in a particular sequence and then unlocks
a door. All these cases make use of state to create specific time-ordered behavior for a
CIrcinl.

Three-cycles-high laser timer—a poorly done first design

Consider the design of a part of a laser surgery
system, such as a svstem for scar removal or |:| b Cantrotler
corrective vision. Such systems work by tum- X
ing on a laser for a precise amount of time (see
“How does n work?—Laser surgery™ on
page 123), A general architecture of such a
system is shown in Figure 3.40. .

A surgeon activates the laser by pressing  Figure 3.80 Laser timer system.
the button, Assume that the laser should then
stay on for exactly 30 ns, Assume that the svstem™s clock period is 10 ns, so that 3 ¢lock cycles last
30 ns. Assume that b from the button 15 synchronized with the clock and stays high for exactly |
clock cycle. We need to design a controller compoenent that, once detecting that b = 1, holds x high
[or exactly 3 clock eyeles, thus tuming on the laser for 30 ns.

This 15 one example for which a microprocessor solution may not work. Using a micropro-
cessor’s programming statements that read input ports and write output ports may not provide a way
1 hold an output port high for exactly 30 ns—{or example. when the microprocessor clock fre-
guency is not fast enough.

laser

U
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Let's try to create a sequential circuit implemen-

fation for the system. After thunking about the b

problem for a while, we might come up with the (bad) =D QD @ ".'_'D Q

implementation in Figure 3.41. By 1'} 1 —‘
Knowing the output should be held high for three .

clock cycles. we used three flip-flops, with the idea

being that we'll shift a 1 through those three flip-flops,
taking three clock cyveles for the bit to move through all
three flip-flops. We ORed the flip-flop outputs to gen-
erate signal x, so that if any (lip-flop contains a 1. the
lager will be on. We made b the input w the first ip-
flop, so when b=1, the first flip-tlop stores a 1 on the next rising clock edge, One clock cycle later,
the second ip-flop will get loaded with 1, and assuming & has now retumed to 0, the first flip-flop
will get loaded with o, One clock cycle later, the third flip-flap will get loaded with 1, and the second
flip-flop with 0. One clock cycle later, the third flip-flop will get loaded with 0. Thus, the circuit held
the outpul x at 1 for three clock cyeles after the button was pressed.

Figure 3.41 First {bad) attempt to
implement the laser timer system,

We did a poor job implementing this system. First, what happens if the surgeon
presses the bution a second time before the three cycles are completed? Such a situation
could cause the laser to stay on too long. Is there a simple way to fix our circuit to
account For that behavior? Second, we didn’t use any orderly process lor designing the
circuit—we came up with the ORing of flip-flop outputs, but how did we come up with
that? Will that method work for all time-ordered behavior that needs to be designed?

Two things are required to do a better job at designing circuits having time-ordered
behavior: (1) a way to explicitly capfure the desired time-ordered behavior, and {2) a
technique for converiing such behavior to a sequential circuit.

Laser surgery has become very popular in the past twao
decades, and has been enabled due to digital systems.,
Lasers, invented in the carly 19605, generate an
intense narrow beam of coherent light, with photons
having a single wavelength and being in phase (like
being in rhythm) with one another. In contrast, a
regular light's photons fly oul in all directions, with a
diversity of wavelengths, Think of a laser as a platoon
of soldiers marching in synch, while a regular light is
more like Kids running out of school at the end-of-the-
day bell. A laser's light can be so intense as 1o cven
cut steel. The ability of a digital circuit to carefully
control the location, intensity, and duration of the laser
is what makes lasers so useful for surgery.

One popular use of lasers for surgery is for scar
remaval. The laser is focused on the damaged cells
slightly below the surface, causing those cells to be
vaporized. The laser can also be used W vaponize skin

» HOW DOES IT WORK?—LASER SURGERY.

cells that form bumps on the skin, due 1o scars or moles.
Similarly, lasers can reduce wrinkles by smoothing the
skin around the wrinkle 1o make the ecrevices maore
gradual and hence less obvious, or by stimulating tissue
under the skin (o stimulate new collagen growth.

Anather popular use of lasers for surgery is for
commecling vision. In one popular laser eye surgery
method, the surgeon uses a laser to cut open a flap on
the surface of the cornea, and then uses a laser o
reshape the comea by thinning the cormmea in a
particular pattern., with such thinning accomplished
through vaporizing cells.

A digital system controls the laser's location, energy,
and duration, based on programmed information of the
desired procedure. The availability of lasers, combined
with low-cost high-speed digital circuits, makes such
precise and useful surgery now possible,
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126 » 3 Seguential Logic Design: Controllers

The above examples illustrate that a finfte-state machine or FSM 15 a mathematical
formalism consisting of several items:

* A sel of states, The above example had four states; [ Onl, On2, Ond, O4F}.

A set of inputs and a set of outputs. The example bad one input: {b}, and one

output: {x}.

= An initial state: the state in which to start when the system is first powered on. An
FSM's initial state can be shown graphically by a directed edge (an edge with an
arrow at one end) starting from no state and pointing to the initial state, An FSM
can only have one initial state, The example’s initial state was the state named Off.
Mote that Off is just a name, and does not suggest that the system’s power is off
(rather, it suggests that the laser is off).

* A sel of transitions: An indication of the next stale based on the current state and

the current values of the inputs. The example used directed edges with associated

input condifions, which is a Boolean expression of input variables, to indicate the

next state. Those edges with conditions are called framsitions. The example had

several transitions, such as the edge with condition b*clk ™,

A description of what output values to assign in each state. The example assigns a
value to x in every state. Assigning an cutput in an FSM is known as an actien.

After being defined, an FSM can then be executed {even if just mentally)—what
| computer programmers might call "running™ the FSM. The FSM starts with the current |
—qj_lp; state being the initial state and then transitions to a different state based on the current ‘—T—k“
| state and mput values, continuing as tme proceeds. In each state, the FSM sets output

values, Mentally executing an FSM 15 akin to menially evaluating a Boolean equation for

sample mmput values.

The FSM in Figure 3.45 would be interpreted as follows. The system starts in the

initial state (. The system siays in state Cff until one of the state’s two oulgoing transi-

tions has a true condition. One of those transitions has the condition of b *21k™—in that

case, the system transitions right back to state Off. The other transition has the condition

of b*clk™—in that case, the system transitions to state Onl. The system stays in state

Ond until its only outgoing transition’s condition 21k®™  becomes true—in which case the

system transitions to state OJn2. Likewise, the system stays in (n2 until the next rising

clock edge, transitioning to (nd. The system stays in (a3 until the next rising clock

edge, transitioning back to state Off. State Off has associated the action of setting x=0,

while the states Onl, On2, and Ond each set x=1.

> “STATE” | UNDERSTAND, BUT WHY THE TERMS “FINITE” AND “MACHINE?"

Finite-state mackines, or FSMs, have a rmather “machine” 15 used in 18 mathematical or computer
awkward name that sometimes causes confusion. The  science sense, being a conceptwal object that can
term “finite™ is there to contrast FSMs with & similar  execute an abstract language—specifically, that sense
representation used in mathematics that can have an of machine 18 sof hardware. Finile-state machines are
infinite number of states; that represemtation is not  also known as finite-state automata, FSMs are used
very useful in digital design. FSMs, in contrast, have  for many things other than just digital design.

a limited, or finite, number of states. The term
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Figure 3.96 Simplifying
notation: implicit rising
clock edge on every

fransition.

L)

Figure 3.48 Transition

is ken on

clock edge.

nexl rising

Example 3.4

3.3 Finite-State Machines [FSMs) < 127

The FSM in Figure 3.45 precisely describes the desired time-ordered behavior of the
laser timer system from Example 3.3.

It is interesting to examine the behavier of this FSM if the button is pressed a second
time while the laser is on. Notice that the transitions among the O states are independent
of the value of b. So this system will always turn the laser on for exactly three cyeles and
then return to the Off state to await another press of the button.

Simplilying FSM Notation: Making the Rising Clock Implicit

Thus far the rising clock edge (c1k™} has
appeared in the condition of every FSM transi- MPulsx  Outputs:b
tion, because this book only considers the design x=0
of sequential circuits that are svnchronous and Tﬂﬁb b
that use rising edge-triggered flip-flops to store e
bits. Synchronous circuits with edge-triggered
flip-flops make up the majority of sequential cir- : x=]
cuits in modern practice. As such, to make state j—\ {-}ng ;—3,—,3
diagrams more readable, most textbooks and _
designers follow the convention shown in Figure  Tigure 3.47 [”"‘”“mfzf Ll "l"’gr“m
3.46 wherein every FSM transition is implicitly =~ 00 UNE EVeIY T e e
: , e with a nsing clock.

ANDed with a nising clock edge. For example, a =
transition  labeled means
“a'*=lk”™” Subsequent state diagrams will not include the rising clock edge in transi- |
tion conditions, instead following the convention that every transition is implicitly
AMDed with a rising clock edge. Figure 3.47 illustrates the laser imer state diagram from
Figure 3.45, redrawn using implicit rising clock edges.

A transition with no associated condition as in Figure 3.48 simply transitions on the
next rising clock edge, because of the implicit nsing clock edge.

Following are more examples showing how F5Ms can describe tume-ordered
behavior.

“a'”  actally

SBCUre car key

Have vou noticed that the keys for many new automaobiles have a thicker plastic head than in the
past (see Figure 3.49)7 The reason is that, believe it or not, there is a computer chip inside the head
of the key, implementing a secure car key. In a basic version of such a secure car key, when the
driver turns the key in the ignition. the car’s computer (which is under the hood and communicates
using what's called the basestation) sends out a radio signal asking the car key's chip to respond by
sending an identifier via a radio signal. The chip in the key then responds by sending the identifier

-

Figure 3.49 Why are the heads of car keys getting thicker? Note that the key on the right is thicker
than the key on the left. The key on the right has a computer chip inside that sends an identifier to
the car's computer, thus helping to reduce car thefts.

+
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TP
Ny

.

(11, using what's known as a tronsponder (3 transponder “transmits™ in “response” o a request). 1f
the basestation does not receive a response or the key's response has an ID different than the 1D

programmed into the car’s computer, the computer shuts down and the car won't start.

Let's design the controller for such a
key, having an ID of 1011 (real 1Ds are typ-
ically 32 bits long or more, pot just 4 bits).
Assume the controller has an input a that is
1 when the car’s computer reguests the key's
D, Thus the controller initially waits for the
input a to become 1. The key should then
send its 1D {1011) serially, starting with the
rightmaost bit, on an output r; the key sends
1 on the first clock cyele. 1 on the second

\,.'~ inputs:a Oulputs

O e
.l-l_.-'-"
K Kz
ral r=1 r=0 =1

Figure 3.50 Secure car key FSM. Recall that each
edpe’s conditien includes an implicit rising clock

cycle, @ on the third cvele, and finally 1 on
the fourth cycle, The FSM for the controller
i% shown in Figure 3.50. Note that the FSM

sends the hits starting from the bit on the nght, which is known as the feast significant bit (LSB).
The computer chip in the car key has circuitry that converts radio signals to bits and vice versa.
Figure 351 provides a timing diagrum for the FSM for a particular situation. When we set
a = 1, the FSM enters state K/ and outputs r = 1. The FSM then proceeds through K2, K3, and K4,
outputling r=1_ 0, and 1, respectively. even though we returned inpat a w 0.
Timing diagrams represent a particular situation defined by how we set the inputs, What would
have happened if we had held a = 1 for many more clock cycles? The timing diagram in Figure
3.52 illustrates that situation. Notice how in that case the FSM. after returning o state Windr, pro- |

ceeds to state K/ again on the next cyele.

“So omy car key may someday need
its batterics replaced”” you might ask.
Actually, no—those chips in keys draw
their power, as well as their clock, [rom
the magnetic component of the radio-fre- a
quency  field  generated from  the State
computer basestation, as in RFID chips.
The extremely low power reguirement
makes custom  digital ciecnitry, rather
than INslruchions on a MICrOpProcesson a
preferred implementation.

Computer chip keys make stealing
cars a Lot harder—moe more “hol-wiring”
to start a car, since the car's computer
won't work unless it also receives the
comrect identifier. And the method above
s actually an  overly  simplistic

Inpuis

method—many cars have more sophisti- State

caled  communmication between  the
computer and the kev, involving several
communications in both divections, even
using encrypted communication—making
fonling the car's computer even harder, A
dreawback of secure car keys 15 that you

Cuipuits

cdge.
.':""\.
Inpurs—l—l
Wait|Walt K1 | K2 | K3 | K4 |Wait)Wait
oLpuis
: ] .
Figure 3.571 Secure car key timing diagram.
=1 |
VWail |Wait | K1 | K2 | K3 | K4 W.Hitkt
| L L
Figure 3.52 Secure car key timing diagram for a different
sequence of values on input a.
‘e
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Example 35

How to Capture

3.3 Finite-State Machines [FShs) 129

can’t just run down to the local hardware store and copy those keys for 35 any longer—copying keys
requires special tools that today can mun $30-3100. A common problem while computer chip kevs
were becoming popular was that low-cost locksmiths didn’t realize the keys had chips in them, so
copies were made and the car owners went home and later couldn’t figure out why their car wouldn't
start, even though the key fit in the iznition slot and tumed.

Flight-attendant call button

This example uses an FSM to describe the desired inputs: Call, Cnel Oulputs: L
behavior of the flight-atendant call button system

from Figure 3.1. The FSM has inputs call and L=g “all

Cnel for the call and cancel buttons, and output :

L to control the light. ©al11 will be given priority Sl ‘@‘@

if both buttons are pressed. The FSM has two / o8 (Cncl*Cally’

stutes, LightQff, which sets L o 0. and LighiChn,

which sets L to 1. as shown in Figure 353, Light-  Figure 3.53 FSM for flight-attendant call

Cff is the imitial state. The FSM stays in that stale  hupon syslerm.

untl Call s 1, which causes a transition (o

LightOn. If call is 0. the FSM stays in LightOff. In state LightOn, the only way to transition back

to LightOff is if Cnel is 1 and Call is 0 (because the call button has priority), meaning

Cnel+*Call !, I that condition is false, ie., (Cnel+Call') ! is true, the FSM stays in LightOn.
Motice how clearly the FSM captures the behavior of the Hight-attendant call button system.

Cmce you understand FSMs, an FSM description 15 likely to be more concise and precise than an

English description.

Desired System Behavior as an FSM

The previous section showed FSM examples, but how were those FSMs originally cre-
ated? Creating an FSM that captures desired system behavior can be a challenging task
for a designer. Using the following method can help:

= List states: First list all possible states of the system, giving each a meaningful
name, and denoting the imitial state, Optionally add some transitions if they help
indicate the purpose of each state.

= Create transitions: For each state, define all possible transitions leaving that state.
* Refine the FSM: Execute the FSM mentally and make any needed improvements.

The method described above is just a guide. Capturing behavior as an FSM may
require some creativity and trial-and-error, as is the case in some other engineering tasks,
like computer programming. For a complex system, a designer may at first list a few
states, and then upon defining transitions the designer may decide that more states are
required. While creating an F5M, the preciseness of the FSM may cause the designer to
realize that the system’s behavior should be differem than originally anticipated. Note
also that many different FSMs could be created that describe the same desired behavior;
one FSM may be easier to understand while another FSM may have fewer states, for
example. Experience can help greatly in creating correct and easy-to-understand FSMs
that capture desired system behavior.
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3.3 Finite-State Machines [FSs) 131
the FSM should go to state Redl; we'd already added that transition {ax). If a button is pressed and
that button is not the red button (ax '), then the FSM should somehow enter a “fail” mode and not
unlock the door. At this point, we might consider adding another state called Fail. Instead, we
decide that the FSM should go back to the Wail state and just wait for the start button to be pressed
again, s0 we add such a transition with condition ar ' as shown,
The pattern of three transitions
for state Starf can be replicated for Inputs: 519,08
states Red I, Blue, and Green, mod- Oufputs:u
ified to detect the correct colored
button press as shown in Figure 3.57.
Finally, we must decide what the
FSM should do after the FS5M
reaches state Red? and unlocks the
door. For simplicity of this example,
we decide o have the FSM just
retumn to state Wait, which locks the
door again; a real system would keep
the door unlocked for a fixed pericd Figure 3.57 Code detector FSM with complete transitions.
of time before locking it again.
Refine the FSM: We can now mentally execute the FSM to see if it behaves as desired:
= The FEM begins in the Wil stote, As long as the stant button is not pressed (s '), the FSM stavs
in Wair, when the start button = is pressed (and a rising clock edge arrives, of course), the FSM
zoes (0 the Srart stote.
= Being in the Skarf state means the FSM is now ready to detect the sequence red, blue, green, red. |
If no button 1s pressed (a ' ). the FSM stays in Srarr. IFa button is pressed AND that bution is the 3 ﬂ"

red button (ar), the FSM goes to state Bed . Instead, if a button is pressed AND that button is
el the red bution (a1 * ), the FSM retums (o the Wa it sole—nole that when in the W state,
further presses of the colored buttons would be ignored, until the start button is pressed again.

The FSM stays in state Red! as long as no button is pressed {a * ). If a button is pressed ANID
that button is blue (ab), the FSM goes o state Bfue; it that button is not blue (ak '), the FSM
returns to state Wadr, At this point, we detect a potential problem—what if the red button is still
being pressed as part of the first button press when the next rising clock edge arrives? The ISM
woutld go to state Wail, which iz not what we wanl, One solution is to add another state,
Red!_Release, that the FSM transitions 1o afler Red !, and in which the FSM stays until a=0.
For simplicity, we'll instead assume that each button has a special circuil that synchronizes
the button with the clock signal. That circuit sets its output to 1 for exactly one clock cycle
for each unique press of the button. This 1s necessary 0 ensure that the current state doesn't
inadvertently change to another state if a button press lasts langer than a single clock cycle.
We'll design such a synchronization circuit in Example 3.9,

Likewise, the FSM stays in state Blue as long as no button is pressed (a '), and goes to state
Crreen on conditien ag. and state YWeaor on condition ag ' .

Finally, the FEM stays in Green if no button is pressed, and goes to state Ked? on condition axr,
g o state Wanf on condition ax” .

If the F5M makes it to state Red2, that means that the wser pressed the buttons in the correct
sequence—Red? will set u=1, thus unlocking the door. Note that all other states set u=0. The
F5M6 then returns to state Warit,

+

s
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3 Seguential Logic Design: Controllers

The FSM works well for normald
button  presses, but  let’s  mentally \
execute the FSM for unusual cases.
What happens if the user presses the
start button and then presses afl theee u=0
cedored burtons simudtaneonsly, four
times in a row? The way the FSM is
defined, the door would unlock! A “°F,
solution o this updesired situation s ;;,rglrf-——— Agrh' Ay’
o modify the ransitions between the Red? KE.-;K,_EE(S?\GIEE“ R
states that detect comect colored u=0 u=0
bution presses, o detect not only the Figure 3,58 Improved code detector FSM.
comect colored button press, but also
that the other colored buttons are nor pressed. For example, for the transition leaving state Start with
condition ar, the condition should instead be a (rb' g ). That change alse means that the transition
going back o state Werit should have the condition a frk g') "'. The intuitive meaning of that con-
dition is that a button was pressed, but it was not just the red button. Similar changes can be made to
the other transition conditions too, resulting in the improved FSM of Figure 3.58.

Inpuls: 5.ng,ba
Dufplifs u

3.4 CONTROLLER DESIGN

Standard Controller Architecture for Implementing
an FSM as a Sequential Circuit

The previous section provided examples of capturing sequential behavior using FSMs.
This section defines a process to convert an F5M to a sequential circuit. The sequential
circuit that implements an FSM is commonly called a controffer. Converting an F5M 10 a
controller is quite straightforward when a standard pattern. commonly called a standard
architecture, is used for the controller. Other ways exist for implementing an FSM, bui
using the standard architecture results in a strmightforward design process.

A standard controller architecture for an

Laser timer controlber

FSM consists of a register and combinational b | 4

= NN EE— . " -
logic. For example, the standard controller FSid IEl:'ﬁl'l'l|:I!I'If5|1t-:ﬂ'lEl:| E FSM
architecture for the laser timer FSM of Figure inpuls hagi = | outputs
3.45 is shown in Figure 3.59. The controller’s - HEU d
register stores the current FSM state and is
thus called a state register. Each state is rep- 5% ;f’tat'“ regiekor

resented as a unigque bit encoding. For “

example, the laser timer’s O state could be
encoded as 00, Onl as 01, Onl as 10, and Figure 3.59 Standard controller architecture
n3 as 11, the four states thus requiring a 2- 54 the laser Bmer.

bit stale register.

The combhinational logic computes the output values for the present state, and also
computes the next state based on the current state and current input values. Its inputs are
thus the state register bits (81 and 30 in the example of Figure 3.59) and the FSM's
external inputs (b for the example). The combinational logic’s outputs are the outputs of

o
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3.4 Controller Design 135

We then obtain the sequential circuit in

. . : Laser timer controller
Figure 3.62, implementing the F5M.

b Combinational lagic

|
/

ni

i
Y

o
*
&1 LS + 50
cik Stale register
ﬁ.}
Figure 3.62 Final implementation of the 1 i
three-cycles-high laser timer controller.

Many textbooks use different table organizations from that in Table 3.3. However, we

intenticnally organized the table so that it serves both as a stafe fable, which is a tabular

| representation of an FSM, and as a trath 1able that can be used o design the combina- |
tional logic of the controller.

e L
oo iy oy it
. Example 38  Understanding the laser timer controller's behavior |

To aid in wnderstanding how a controller implements an F5M. this example traces through the
behavior of the three-cycles-high laser imer contreller. Assume the system s imitially in state 00
(2180=00), b is 0, and the clock is currently low, As shown in Figure 3.63(a). based on the com-
binational logic, x will be 0 (the desired output in state 00), nl will be 0, and no will be 4, mean-
ing the value 00 will be waiting at the state register's inputs. Thus, on the rext clock edge, 00 will
be loaded into the state register. meaning the system stays in state 00—which is correct.

Mow suppose b becomes 1. As shown in Figure 3.63(h), xx will stll be 0, as desired. n1 will
be 0, bt n0 will be 1, meaning the value 01 will be waiting at the state register’s inputs. Thus, on
the mext clock edge, 01 wall be loaded into the state register, as desired.

As in Figure 3.63(c), soon after 01 is loaded into the state register, x will become 1 (after the
register is loaded, there's a slight delay as the new values for a1 and a0 propagate through the
combinational logic gates). That output s correct—the system should owtput x=1 when in state 01.
Also, nl will become v and no will equal ©, meaning the value 10 will be waiting at the state
register mputs, Thus, on the next clock edge. 10 will be loaded imo the state register, as desired.

After 10 15 loaded into the state register, 1 will stay 1, and nino becomes 11. When another
clock edge comes, 11 will be loaded into the register, = will stay 1, and n1n0 becomes 00,

When ancther clock edge comes, 00 will be loaded into the register. Soon after, 2 will become
0,and if b s 0, n1nd will stay 00; 1f b is 1. n1n0 will become 01, Notice that the system is back
in the state where it stanted.

Understanding how a state register and combinational logic implement a state machine can lake
a while, gince in a particular state (indicated by the value presently in the state register), we generate

i£ ‘o
¢ .

+

4 -+
@« —@— ¢ @
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3.4 Controller Design 137

bo=0 again, so that bo was 1 for just one cyele, as desired. The FSM goes from B o A
iFoz returned to 0. IFba 15 s6ll 1, the FEM goes o state O, where the FSM wails for b1
to return O, causing a transition back to state A.

Set up the architecture. Because the FSM has three states, the architecture has a two-
Bit state register, as in Figure 3.635(k).

Step 2B: Encode the states,

10, as in Figure 3.05(c).

Step 20 Fill in the truth table,

The three states can be stroightforwardly encoded as 00, 01, and

We convert the FSM with encoded states to @ truth table for the

controfler’s combinational logic, as shown in Figure 3.65(d). For the unused siate 11, we
have chosen to Qe paed bo=0 and return to state 00,

Step 2D; Implement the combinational logic,

We derive the equations for each combinational

logic output, as shown in Figure 3.65(¢), and then create the final circuit as shown.

Figure 3.65 Button press
synchronizer design
steps: (a) initial FSM, (h)
controller architecture,
() FSM with encoded
states, (d) truth table for
the combinational logic,
(e} final controfler with
implemeanted
combinational logic.

FEM inputs bi; FEAM oulpuls bo

b = 254 PPE 2 R
" bi w2 Combinational 'g_ =
\‘r”_ {; bi o bl lagic n °
N bi b i
bo=0 bo=1 bo=0 rid
(@) o1 o
State reqgister
. : elk—- =3
FEM inputs: bi; FEAM oulpurs: bo =
tHr bi t—
~M".-"” M bi* Q bi’ (b
OO iy
nl = 51°s0bi + 51
bo=0 bo=1 bo=0 n0 = 51'si¥bi
e} bo = 51'506i" + §150bi = $1'50
e : Combinational logic
inational logic —
b
Inputs Cuiputs -N'I——i-
51 50 bi | ni n0bo bi i L
s~ O000|0DD [
& eo01loto L= o
I.-"'B"\, a1 0 0D g1 '*—'—C
pee el —
(y 100[000 s : Ly
(Ml = Ll s 4
4 1101000 s14 4 =0
unuse
- 1id — P |l
) i
}4
(el
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Example 3.10

Sequence generator

This example designs 2 sequential circuit with four out-  Inpuls: (none)  Culpuls: w, x.y, 2
puts: w, =, v, and 2. The circuit should generate the fol- wxyZ=0001 wxyze=1000
lowing sequence of oulput patterns: 0001, 0011, 1100, .-*"I"‘\I D ™
and 1000, one per ¢lock cyele, After 1000, the circuit !
should repeat the sequence. Seguence generators are ﬁ
common in a variety of svstems, such as a system that " *
blinks & set of four lights in a particular pattern for a fes- "r:El >—l'-< C}
tive lights n.ii:-;pi.uy. Another example 18 4 system that w::.-r:i}-ﬂﬂ w:yrEWD
rotates an electric motor a fixed number of degrees each
clock cycle by powering magnets around the motor in a  Figure 366 Sequence generator FSM.
specific sequence 1o attract the magnetized motor 1o the
next position in the rotation—known as a stepper motor, because the motor rotates in steps.

The sequence generator contreller can be designed

- : —-
using the controller design process: S N
T
Step 1: Capture the FSM. Figure 3.66 shows an :L’;?:mal i
F5M having four states labeled A, B, C, and I} i
ithough any other four unique names would do ~y
Just fing) to generate the desired sequence, 51 * hg
Step 2A: Set up the architecture. The standard con- i . State register
troller architecture for the sequence gencrator g pext
will have a 2-bit state register to represent the . t

four possible states, no inputs to the logic, and _
outputs w, ®, ¥. £ from the logic, along with Figure 3.67 "5':':'-'!“":“':'-" Benerator
outputs il and nd, as shown in Figere 3,67, controller architecture.

Step 2B: Encode the states. The states can be encoded os follows—aA: 00, #: 01, C: 10, [k 11.
Any other encoding with a unigue code for cach state would also be fine.

Step 2C; Fill in the truth table,  Table 3.4 shows the wable for the FSM with encoded states,

Step 2Iv Implement the combinational logic.  An equation can be derived for cach output of the
combinational logic directly from the truth table. After some algebraic simplification, the
equations are those shown below. The final circuit is shown in Figure 3.68.

A

i}

TABLE3.4 State table forsequence w = 51 I _ —
generator controller, ¥ = =1=0° . . P
—
Inputs Chtputs vy = 3l'sd —l v
- L] [ iy
gl s|{w x v z nlno z = 8l —”J:} 2
nl = 831 xor =0 I_
0 @& 0 o 1 0 1
s Ijj_}
¢ 1|2 o0 1 31 1 o >
1 a7 3 A o o 1 1 f o ni
s1] Jeo
i 111 9 oo 4 9 0 :
: .. State ta
Figure 3.68 Scquence generator Gl regsiet |
controller with implemented * i
combinational logic. |
T =+
B i
& A

&
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Example 3.11 Secure car key controller {continued)

Let’s eomplete the design for the secure car key controller from Example 3.4, We already carried

3.4 Controller Design

oul Step 1: Capture the FSM. shown in Figure 3,50, The remaining steps are as follows.

Step 2A

Step 2B

Step 20

t Set up the architecture,  The FSM has five states, and thus requires a 3-bit stale reg-
ister, which can represent eight states: three states will be unused. The inputs to the
combinatienal logic are a and the three state bits 52, 51, and 57, while the outpuls are
signal r and next state outputs n2, nl, and nd. The architecture is shown in Figure 3.64,

: Encode the states. Let’s encode the states using a straightforward binary encoding of

000 through 100, The FSM with state encodings is shown in Figure 3.70.

: Fill in the truth table, The FSM converted to a truth table for the logic is shown in Tahle

3.5, For the unused states, we have chosen to sel o= 0 and the next state o 900,

el s

SE-—-

Combinational
lagic

ni r=0

nid

52‘| sl| 51::I|

-}Elﬂ.tﬂ reqgister

-

Fre |

s,

Step 2D

- Figure 3.63 Sccure car key
’ controller architectuns,

s+ Implement the combinational
logic. We can desipn four circusts, one
for each output, to implement the comhbina-
tuonal logic,. We leave this step as an
exercise for the reader.

nputs-a  Oulpuls:r

r=1 rs r=0

Figure 3.70 Sccure car key FSM with encoded states.

=

139

TABLE 3.5 Truth table for secure car key
controller's combinational logic.

Inputs Clutputs

]
[ ]
[ ]
P
]
o]
o]

r n2 nl ni

i 0 0 0 Oo|la o0 0 O©O
Waw 6 o0 90 1|0 o 0 1
o0 o1 ol o0 1 O
Kl 0 0 1 1|2 @ 1 O
W] 1 i i i a 1 1
L% o 0 1|1 o 1 1
K3 (] 1 ] [4] 1 | G
o 1 1|19 1 0 O
(& (] ] ¥

¥4 1 0 0 0
1 0 0 1|1 © 9 0
1 01 9|9 O 8 D
1 0 1 1|9 0 0 0
1 1 o0 o|la & G D
el 1 1 90 1|9 o O 0
1 1 1 0|9 ¢ O o
1 1 1 1|9 o 0O O
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3 Seguential Logic Design: Controllers

Converting a Circuit to an FSM {Reverse Engineering)

—

‘&

We showed in Section 2.6 that a circuit, truth table, and equation were all forms able o
represent the same combinational function, Similarly, a circuit, state table, and FSM are
all forms able to represent the same sequential function.

The process in Table 3.2 for converting an FSM 1o a circuit can be applied in reverse
to converl a circuit o an FSM. In general, converting a circuit to an equation or FSM is
known as reverse engineering the behavior of the circuit, Not only 1s reverse engineering
uscful to help develop a better understanding of sequential circuit design, but it can also
be used to understand the behavior of a previously-designed circuit such as a circuit
created by a designer who is no longer at a company, and also to check that a circuit we

designed has the correct behavior.

Example 3.12 Converting a sequential circuit to an FSM

Given the sequential circuit in Figure 3,71, find
an equivalent FSM, We start from step 2D in
Table 3.2, The combinational circuit already
exists, Step 2C fills in a truth table. The combi-
national logic in the controller architecture has
three inputs: two inpuwis 50 and 51 represent
the contents of the state register, and x is an
external input. Thus the truth table will have 8
rows because there are 2° = & possible combina-
tions of inputs. After listing the wruth ble and
enumerating all combinations of inpus {e.g.,
slg0x =000, s81s0x=111), the iech-
niques in Section 2.6 can be used to fill in the
values of the outputs. Coensider the output .
The combinational eircuit shows that v ==1".
Knowing this, we place a 1 in the v column of
the truth table in every row where s1 =0, and

LIS LT
! S
| —
T oi—
r P
L S Im
o h
ey
s ni |
s14 Yeo kw
WP h_JEtat-E ragisker |
i + . .

Figure 3.71 Circuit with unknown behavior.

place & 0 in the remaining spaces in the v column. Consider no, which the circuit shows as having
the Boelean equation nt=s51"s0"x%x. Accordingly, we set n0 0 1 when 51 =0 and 50 =90 and
x=1. We fill in the columns for = and nl wsing a similar anal ysis and move on o the next step.

TABLE 3.6 Truth tahle for circuit.

Step 2B encodes the states. The states have
already been encoded, so this step in reverse assigns
a name 0 encoded state. We arbitranly choose the
names A, 8, C, and £, seen in Table 3.6,

Step 2A sets up the stundard controller architec-
ture. This step requires no work since the controller
architectiure was already defined.

Finally, step 1 capturcs the FSMM. Initially, we
can set up an FSM diagram with the four states
whose names were given i step 2A, shown in Figure
372 a). Mext, we list the values of the FSM outputs +
and 2 next to each state as defined by the truth table

Inpurs Outputs
21 20 x |nl n0 ¥ =
A 0 ] 0 Q o 1 Q
i) 1] 1 Q 1 1 Q
B o 1 0 Q 8] 1 8]
0 1 1 1 Q 1 Q
Fé 1 Q Q =) Q 0 1
) 1 Q 1 1 Q Q 1
1 1 0 o Q 0 Q
b 1 1 1 Q ] 0 a
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3.4 Controller Design 143

A designer can verity the above two properties using Boolean algebra. The exclusive
transitions property can be verified by ensuring that the AND of every pair of condifions
an g state's transitions always resulis in 0. For example, if a state has two transitions, one
with condition x and the other with condition x* v, transformations of Boolean algebra
can be used as follows:

Hokox'y

= {rwm?) % ¥
:(]*E.r

=

If a state has three transitions with conditions O/, C2, and 3, the designer can verify
that CI*(2=0, C1*C3=0, and finally that C2*C3=0, thus verifying that every pair yields
0. Note that verifying that Cf#*C2#C3=0 does not verify that the transitions are exclusive;
for example, if C and C2 were exclusive but 2 and €3 were not, C/+*C2*03 would still
equal 0 hecause 0*(3=0.

The sccond property of complete transitions can be verified by checking that the OF
af all the condiftons on a state’s fransitions respdis in 1. Considering the same example of
a state that has two transitions, one with condition x and the other with condition x* vy,
transformations of Boolean algebra can be applied as follows:

flm W& }[l::rl' ."I"“'\.

= x*[l+'},r:| + J{l-}r oy
= X + XV + X'y ’

= X + [X+XFlwy
= W "_il."

4

The OR of those two conditions is not 1 but rather x+vy. If x and v were both 0,
neither condition would be true, and so the nexit state would not be specified in the FSM.
Figure 3.75(b) fixed this problem by adding another transition, x'vy'. Checking these
transitions vields:

o +H'}'+K'}"1
= X + X'{wv+y']
= X + XN'¥*1

= ¥ 4 !

= i

If a state has three transitions with conditions €1, C2, and C3, the designer can verify
that C/+C2+C3=1,

Proving the properties for the transitions of every state can be time-consuming. A
good FSM capture tool will verify the above two properties automatically and inform the
designer of any problems.

£ L*

+ A 4-
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146 » 3 Seguential Logic Design: Controllers
3.5 MORE ON FLIP-FLOPS AND CONTROLLERS
Mon-ldeal Flip-Flop Behavior
When first learning digital design we assume ideal behavior for logic gates and flip-flops,
just like when first learning physics of motion we assume there’s no metion or wind
resistance. However, there s a non-ideal behavior of flip-tflops—metastability—rthat 1s
such a common problem in the practice of real digital design, we feel obliged to discuss
the issue briefly here, Digital designers in practice should study metastability and pos-
sihle solutions quite thoroughly before doing serious designs, Metastability comes from
failing to meet flip-flop setup or hold times, which are now introduced.
Setup Times and Hold Times
Flip-flops are built from wires and logic gates, and wires and logic gates have delays,
Thus, a real flip-tlop imposes some restrictions on when the flip-flop’s inputs can change
relative to the clock edge. in order to ensure correct operation despite those delays. Two
Important restriclions are;
* Setup time: The inputs of a flip-flop (e.g., the D
input} must be stable for a minimum amount of time, ok
known as the setup time, before a clock edge arrives. ;
This intuitively makes sense—the input values must b | | |
| hm'.n:: time to propagate 1hm11g.]1_ any flip-flop in.tn::mul E i
e logic and be wating at the internal gates’ inputs setup time
AT,_ i before the clock pulse arrives.
. = Held time: The inputs of a flip-flop must remain clk
stable for a minimum amount of time, known as the !
hold time, after a clock edge arrives. This also makes ] | !
intuitive sense—the clock signal must have time to P
propagate through the internal gates to create a stable -]
feedback situation, hold time

& @ e i
i
Obras protegidas por Direitos de

Figure 3.79 Flip-Mop setup

A related restriction i1s on the minimum clock pulse .04 hold time restrictions,

width—ithe pulse must be wide enough o ensure that the
correct values propagate through the internal logic and create a stable feedback situation.

A flip-flop typically comes with a datasheet describing setup times, hold times, and
minimum ¢lock pulse widths, A dafasheet is a document that tells a designer what a com-
ponent does and how o properly use that component.

Figure 3.80 illustrates an example of a setup time viclation. D changed to ¢ too close
to the rising clock. The result is that B was not 1 long enough o create a stable feedback
situation in the cross-coupled NOR gates with Q being 0. Instead, © glitches 1o 0 briefly.
That glitch feeds back to the top NOR gate, causing Q' to glitch to 1 briefly. That glitch
feeds back to the bottom NOR gate, and so on. The oscillation would likely continue until
a race condition caused the circuit o settle into a stable siuation of 2 =0 or @ = 1—or the
circuit could enter a metastable state, which we now describe.
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570 [ndex

Fvent 107, 167

event (in VHDL) 502
Exact algorithm 339
Excitation table 120
Exclusive (transitions) 142
Exclusive OR 8]

Execute 466

Expand operution 346
Expanding (o term) 340
Expression 62

F
Fabrication plant (fab) 415
Factoring 330

Fahrenheit 213

Falling edge-triggered flip-flop 116
Fanout 225

Feature size 449

Field programmable gate array 424
FIFC (first-in Mrst-out) 300

FIFC quews 300

Filier 278

Filtering 313

Finite Impulse Response hler 276
Finite-state aufomata 1256
Finite-state machine 124, 126, 505
FIR filter 276, 313, 384, 39]

FIR filter (pipelined) 379

First-in first-out (FIFO) 300
Fixed-point arithmetic 550

Flash memory 294G

Floating point number 5332

Flop 116

Floww-of-control instructon 480
FPOA 424, 445, 446, 448

Frame 303

Frame {videa) 267

Frequency 117

FSM 124,126

FSM with data 253

FEMD 2533

Full-adder 184

Full-custom IC 414
Full-subtractor 197

Funciion cover 3460

Functions (of a register) 173
Fuse-based PLD 441

Fuse-based ROM 204

G

GAL {generic array logic) 444
Crate 46

Giate {of a transistor) 41

Gate array 424

Cate array ASIC 417, 448

(e

Gate delay 91

Crated D latch 112

Gated SR latch 111

Cibyie 21

Ceneral-purpose compiiter 4
Ceneral-purpose processor 46
Cenerate 370

Genenc array logic (GAL)Y 444
Gigabyte 21

Ghiching 151

Global register 303

Global signal 303

Google 12

Ciround 36, 4349

H

Haitz's Law 433

Half-adder 184, 190, 417

[ard core 432

Hordware description language (HEL) 489
DL «, 95, 489

Hertz 118, 278

Heunsie 339

Hex 16

Hexadecimal 16

Hierarchical carry-lookahead ndder 374
Hicrarchy 305

High-level state machine 248

HLSM 248

Hoeld time 146

Hz (Hertzy 118

I

IC 30, 40,413

IC capacity 448

IC type 413
Idempotent 541
[dempoient faw 38
[dentity comparator 191
Identity element 538
[dentity property 56
If-then statement 282
[-then-else statement 282
Implicant 340
Implicaticn table 333
[nerement 215
Incrementer 1940
Indirect addressing 480
initial procedure (in Verilogy 4949
Initial state 126, 150
Input {in Verilog) 491
Instance 259
Instantiate 259
Inastruction memaory 4635
Instruction register 466
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Sensitive (in Verilog) 496
Sensitive (in VHDL) 495
sensitive_pos (in System(C) 503
Sensitivity list {in Verilog) 494, 504
Sensitvity list {in VHDL)y 4935, 304
Sensor 9

Seqguential circuit 35
Sequential multiplier 373
Serial 386

Sertal communication 175, 179
Seralizing 383

Servant 114

Sect{a latch) 109

Set (flip-flop input) 144
Sctup time 146
Seven-segment display 72
Shannon, Clande 45

Shared bus 227

Shift 210

Shift register 173, 436
Shifter 211, 214, 259
Shifting (a register) 173
Shafis and adds 212
Shockley, William 38

SHE {mm ¥YHDL) 519

Sign bit 202

Signal {in VHDL} 490
Signed number 202, 212
Signed-magnitude representation 20K
Significand 552

Silicon 40, 47

Silicon dioxide 41

Silicon Valley 42

simple PLD 444

Simulation 94

Simulator 94

Single precision 5352
Single-purpose processor 461
Size 320

Shding average 211
Small-scale integration 439
S0C 450

Soda machine dispenser 248
Soft core (on an FPGA) 451
Software 22

Solid state 39

Source (of a transistor) 41
Spin (in IC fabrication) 415
SPLD 444

Spuricus value 187

SEAM ZER

551 39

551 chip 439

Stable 108

Stage {(of a pipeline) 378

.,;.!J
&

Stages 466

Standard architecture {for sequential cirewit) 132
Standard cell ASIC 416, 448

standard representation &8

Sbate 22

state diagram 124

State encoding 354

State minimization 351

State reduction 331

State register 132, 168, 505

State table [35

Static 220

Static RAM 28R

std_logic (in VHDL) 489

std_logic_1164 (in VHDL) 489

std_logic_arith (in YHDL) 517
std_logic_unsigned (in VHDL) 517
std_logic_vector (in VHDL) 501

Stepper motor |38

Store operation 463

Storing (in a register) 168

Storing a b {06

Stream 275

Struciure 489

Structured ASIC 418, 446

Subtroction method 6

Subtractor %6
Sum 53 —ﬂl—
Sum of absolue differences (SAD) 281
Sum of minterms 71

Sum of-absolute differences {(SAD) 267
Sum-of-minterms 69, 340
Sum-of-products 55, 69, 74, 327, 422
superscalar processor 482

Switch 36

Switch matrix 432

Switching algebra 537, 538
Synchronized processors 304
Synchronous caircuit 117

Synchronous clear 180, 216
Synchronous reset 150

Synchronous set 150, [80

Synthesis 282

System-on-a-chip (30C) 450

T
T flip-flop 120

Tabular method 341

Tap (in FIR filter) 314

Thyte 21

Technology mapping 417, 427
Telephone 8

Terabyte 21

Term 55

Terminal count 215
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