Switch-Mode Power Supplies: SPICE Simulations and Practical Designs

by: Christophe Basso

Abstract: Switch-Mode Power Supplies: SPICE Simulations and Practical Designs is a comprehensive resource on using SPICE as a power conversion design companion. This book uniquely bridges analysis and market reality to teach the development and marketing of state-of-the-art switching converters. Invaluable to both the graduating student and the experienced design engineer, this guide explains how to derive founding equations of the most popular converters; design safe, reliable converters through numerous practical examples; and utilize SPICE simulations to virtually breadboard a converter on the PC before using the soldering iron.

Full details

Table of Contents

A. ABOUT THE AUTHOR
B. FOREWORD
C. PREFACE
D. NOMENCLATURE
1. INTRODUCTION TO POWER CONVERSION
2. SMALL-SIGNAL MODELING
3. FEEDBACK AND CONTROL LOOPS
4. BASIC BLOCKS AND GENERIC SWITCHED MODELS
5. SIMULATIONS AND PRACTICAL DESIGNS OF NONISOLATED CONVERTERS
6. SIMULATIONS AND PRACTICAL DESIGNS OF OFF-LINE CONVERTERS—THE FRONT END
7. SIMULATIONS AND PRACTICAL DESIGNS OF FLYBACK CONVERTERS
8. SIMULATIONS AND PRACTICAL DESIGNS OF FORWARD CONVERTERS
A. CONCLUSION

Tools & Media
Expanded Table of Contents

A. ABOUT THE AUTHOR

B. FOREWORD

C. PREFACE

D. NOMENCLATURE

1. INTRODUCTION TO POWER CONVERSION
 “DO YOU REALLY NEED TO SIMULATE?”
 WHAT YOU WILL FIND IN THE FOLLOWING PAGES
 WHAT YOU WILL NOT FIND IN THIS BOOK
 CONVERTING POWER WITH RESISTORS
 CONVERTING POWER WITH SWITCHES
 THE DUTY CYCLE FACTORY
 THE BUCK CONVERTER
 THE BOOST CONVERTER
 THE BUCK-BOOST CONVERTER
 INPUT FILTERING
 The RLC Filter
 WHAT I SHOULD RETAIN FROM CHAP. 1
 A RLC TRANSFER FUNCTION
 THE CAPACITOR EQUIVALENT MODEL
 POWER SUPPLY CLASSIFICATION BY TOPOLOGIES

2. SMALL-SIGNAL MODELING
 STATE-SPACE AVERAGING
 THE PWM SWITCH MODEL—THE VOLTAGE-MODE CASE
 THE PWM SWITCH MODEL—THE CURRENT-MODE CASE
 THE PWM SWITCH MODEL—PARASITIC ELEMENTS EFFECTS
 PWM SWITCH MODEL IN BORDERLINE CONDUCTION
 THE PWM SWITCH MODEL—A COLLECTION OF CIRCUITS
 OTHER AVERAGED MODELS
 WHAT I SHOULD RETAIN FROM CHAP. 2
 BASIC TRANSFER FUNCTIONS FOR CONVERTERS
 POLES, ZEROS, AND COMPLEX PLANE—A SIMPLE INTRODUCTION

3. FEEDBACK AND CONTROL LOOPS
 OBSERVATION POINTS
 STABILITY CRITERIA
 PHASE MARGIN AND TRANSIENT RESPONSE
 CHOOSING THE CROSSOVER FREQUENCY
 SHAPING THE COMPENSATION LOOP
 AN EASY STABILIZATION TOOL—THE K FACTOR
 FEEDBACK WITH THE TL431
 THE OPTOCOUPLER
 SHUNT REGULATORS
 SMALL-SIGNAL RESPONSES WITH PSIM AND SIMPLIS
 WHAT I SHOULD RETAIN FROM CHAP. 3
 AUTOMATED POLE-ZERO PLACEMENT
A TL431 SPICE MODEL
TYPE 2 MANUAL POLE-ZERO PLACEMENT
UNDERSTANDING THE VIRTUAL GROUND IN CLOSED-LOOP SYSTEMS

4. BASIC BLOCKS AND GENERIC SWITCHED MODELS
 GENERIC MODELS FOR FASTER SIMULATIONS
 OPERATIONAL AMPLIFIERS
 SOURCES WITH A GIVEN FAN-OUT
 VOLTAGE-ADJUSTABLE PASSIVE ELEMENTS
 A HYSTERESIS SWITCH
 AN UNDervOLTAGE LOCKOUT BLOCK
 LEADING EDGE BLANKING
 COMPARATOR WITH HYSTERESIS
 LOGIC GATES
 TRANSFORMERS
 ASTABLE GENERATOR
 GENERIC CONTROLLERS
 DEAD TIME GENERATION
 LIST OF GENERIC MODELS
 CONVERGENCE OPTIONS
 WHAT I SHOULD RETAIN FROM CHAP. 4
 AN INCOMPLETE REVIEW OF THE TERMINOLOGY USED IN MAGNETIC DESIGNS
 FEEDING TRANSFORMER MODELS WITH PHYSICAL VALUES

5. SIMULATIONS AND PRACTICAL DESIGNS OF NONISOLATED CONVERTERS
 THE BUCK CONVERTER
 THE BOOST CONVERTER
 THE BUCK-BOOST CONVERTER
 THE BOOST IN DISCONTINUOUS MODE, DESIGN EQUATIONS

6. SIMULATIONS AND PRACTICAL DESIGNS OF OFF-LINE CONVERTERS—THE FRONT END
 THE RECTIFIER BRIDGE
 POWER FACTOR CORRECTION
 DESIGNING A BCM BOOST PFC
 WHAT I SHOULD RETAIN FROM CHAP. 6

7. SIMULATIONS AND PRACTICAL DESIGNS OF FLYBACK CONVERTERS
 AN ISOLATED BUCK-BOOST
 FLYBACK WAVEFORMS, NO PARASITIC ELEMENTS
 FLYBACK WAVEFORMS WITH PARASITIC ELEMENTS
 OBSERVING THE DRAIN SIGNAL, NO CLAMPING ACTION
 CLAMPING THE DRAIN EXCURSION
 DCM, LOOKING FOR VALLEYS
 DESIGNING THE CLAMPING NETWORK
 TWO-SWITCH FLYBACK
 ACTIVE CLAMP
 SMALL-SIGNAL RESPONSE OF THE FLYBACK TOPOLOGY
 PRACTICAL CONSIDERATIONS ABOUT THE FLYBACK
 STANDBY POWER OF CONVERTERS
 A 20 W, SINGLE-OUTPUT POWER SUPPLY
 A 90 W, SINGLE-OUTPUT POWER SUPPLY
 A 35 W, MULTIOUTPUT POWER SUPPLY
 COMPONENT CONSTRAINTS FOR THE FLYBACK CONVERTER
 WHAT I SHOULD RETAIN FROM CHAP. 7
 READING THE WAVEFORMS TO EXTRACT THE TRANSFORMER PARAMETERS
 THE STRESS
 TRANSFORMER DESIGN FOR THE 90 W ADAPTER
8. SIMULATIONS AND PRACTICAL DESIGNS OF FORWARD CONVERTERS

AN ISOLATED BUCK CONVERTER
RESET SOLUTION 1, A THIRD WINDING
RESET SOLUTION 2, A TWO-SWITCH CONFIGURATION
RESET SOLUTION 3, THE RESONANT DEMAGNETIZATION
RESET SOLUTION 4, THE RCD CLAMP
RESET SOLUTION 5, THE ACTIVE CLAMP
SYNCHRONOUS RECTIFICATION
MULTIOUTPUT FORWARD CONVERTERS
SMALL-SIGNAL RESPONSE OF THE FORWARD CONVERTER
A SINGLE-OUTPUT 12 V, 250 W FORWARD DESIGN EXAMPLE
COMPONENT CONSTRAINTS FOR THE FORWARD CONVERTER
WHAT I SHOULD RETAIN FROM CHAP. 8
HALF-BRIDGE DRIVERS USING THE BOOTSTRAP TECHNIQUE
IMPEDANCE REFLECTIONS
TRANSFORMER AND INDUCTOR DESIGNS FOR THE 250 W ADAPTER
CD-ROM CONTENT

A. CONCLUSION

Book Details

Title: Switch-Mode Power Supplies: SPICE Simulations and Practical Designs
Publisher: New York, Chicago, San Francisco, Lisbon, London, Madrid, Mexico City, Milan, New Delhi, San Juan, Seoul, Singapore, Sydney, Toronto
Copyright / Pub. Date: 2008 The McGraw-Hill Companies, Inc.
ISBN: 9780071508582
Authors:

Christophe Basso is a technical engineer at ON Semiconductor (formerly Motorola Semiconductor) and a frequent contributor to power electronics magazines and conferences.

Description: Switch-Mode Power Supplies: SPICE Simulations and Practical Designs is a comprehensive resource on using SPICE as a power conversion design companion. This book uniquely bridges analysis and market reality to teach the development and marketing of state-of-the-art switching converters. Invaluable to both the graduating student and the experienced design engineer, this guide explains how to derive founding equations of the most popular converters; design safe, reliable converters through numerous practical examples; and utilize SPICE simulations to virtually breadboard a converter on the PC before using the soldering iron.